Publications by authors named "Peschle C"

MicroRNAs (miRNAs or miRs) are approximately 22 nt single-stranded noncoding RNAs that control gene expression in eukaryotes. miRNAs play an essential role in all basic cellular processes including cell development, proliferation, differentiation, and apoptosis. Importantly, miRNAs regulate hematopoietic progenitor cells differentiation toward the different hematopoietic lineages.

View Article and Find Full Text PDF

Background: The differentiation process, proceeding from stem cells towards the different committed cell types, can be considered as a trajectory towards an attractor of a dynamical process. This view, taking into consideration the transcriptome and miRNome dynamics considered as a whole, instead of looking at few 'master genes' driving the system, offers a novel perspective on this phenomenon. We investigated the 'differentiation trajectories' of the hematopoietic system considering a genome-wide scenario.

View Article and Find Full Text PDF

Background: The human hemoglobin switch (HbF-->HbA) takes place in the peri/post-natal period. In adult life, however, the residual HbF (<1%) may be partially reactivated by chemical inducers and/or cytokines such as the kit ligand (KL). MicroRNAs (miRs) play a pivotal role in normal hematopoiesis: downmodulation of miR-221/222 stimulates human erythropoietic proliferation through upmodulation of the kit receptor.

View Article and Find Full Text PDF

The pathophysiology of coronary artery disease (CAD) progression is not well understood. Endothelial progenitor cells (EPCs) may have an important role. In the present observational cohort study we assessed the number of circulating EPCs in 136 patients undergoing elective percutaneous coronary intervention and who had at least one major epicardial vessel with a nonsignificant stenosis [<50% diameter stenosis (DS)], and the relationship between plasma EPC levels and the 24-mo progression of the nonsignificant coronary artery lesion.

View Article and Find Full Text PDF

It is generally conceded that selective combinations of transcription factors determine hematopoietic lineage commitment and differentiation. Here we show that in normal human hematopoiesis the transcription factor nuclear factor I-A (NFI-A) exhibits a marked lineage-specific expression pattern: it is upmodulated in the erythroid (E) lineage while fully suppressed in the granulopoietic (G) series. In unilineage E culture of hematopoietic progenitor cells (HPCs), NFI-A overexpression or knockdown accelerates or blocks erythropoiesis, respectively: notably, NFI-A overexpression restores E differentiation in the presence of low or minimal erythropoietin stimulus.

View Article and Find Full Text PDF

Background: MicroRNAs are small non-coding RNAs that regulate gene expression through mRNA degradation or translational inhibition. MicroRNAs are emerging as key regulators of normal hematopoiesis and hematologic malignancies. Several miRNAs are differentially expressed during hematopoiesis and their specific expression regulates key functional proteins involved in hematopoietic lineage differentiation.

View Article and Find Full Text PDF

miRNAs (microRNAs) are important regulatory molecules that control gene expression in all eukaryotes. miRNAs play an essential role in basic cellular activities such as proliferation, differentiation, morphogenesis and apoptosis. In haemopoiesis, several miRNA-based pathways have been identified.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) control basic biological functions and are emerging as key regulators of haematopoiesis. This study focused on the functional role of MIRN155 on megakaryocytic (MK) differentiation of human cord blood CD34+ haematopoietic progenitor cells (HPCs). MIRN155, abundantly expressed in early HPCs, decreases sharply during MK differentiation.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are noncoding small RNAs that repress protein translation by targeting specific messenger RNAs. miR-15a and miR-16-1 act as putative tumor suppressors by targeting the oncogene BCL2. These miRNAs form a cluster at the chromosomal region 13q14, which is frequently deleted in cancer.

View Article and Find Full Text PDF

Objectives: Chemotherapy is the preferred therapeutic approach for the therapy of advanced ovarian cancer, but a successful long-term treatment is prevented by the development of drug resistance. Recent works have underlined the involvement of non-coding RNAs, microRNAs (miRNAs) in cancer development, with several conjectures regarding their possible involvement in the evolution of drug resistance. This work was aimed to identify selected microRNAs involved in the development of chemoresistance in ovarian cancer.

View Article and Find Full Text PDF

MicroRNAs (miRNAs or miRs) regulate diverse normal and abnormal cell functions. We have identified a regulatory pathway in normal megakaryopoiesis, involving the PLZF transcription factor, miR-146a and the SDF-1 receptor CXCR4. In leukaemic cell lines PLZF overexpression downmodulated miR-146a and upregulated CXCR4 protein, whereas PLZF knockdown induced the opposite effects.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) represent a bone marrow (BM) population, classically defined by five functional properties: extensive proliferation, ability to differentiate into osteoblasts, chondrocytes, adipocytes, and stromal cells-supporting hematopoiesis. However, research progress in this area has been hampered by lack of suitable markers and standardized procedures for MSC isolation. We have isolated a CD146(+) multipotent MSC population from 20 human BM donors displaying the phenotype of self-renewing osteoprogenitors; an extensive 12-week proliferation; and the ability to differentiate in osteoblasts, chondrocytes, adipocytes, and stromal cells supporting hematopoiesis.

View Article and Find Full Text PDF

We identified a key oncogenic pathway underlying neuroblastoma progression: specifically, MYCN, expressed at elevated level, transactivates the miRNA 17-5p-92 cluster, which inhibits p21 and BIM translation by interaction with their mRNA 3' UTRs. Overexpression of miRNA 17-5p-92 cluster in MYCN-not-amplified neuroblastoma cells strongly augments their in vitro and in vivo tumorigenesis. In vitro or in vivo treatment with antagomir-17-5p abolishes the growth of MYCN-amplified and therapy-resistant neuroblastoma through p21 and BIM upmodulation, leading to cell cycling blockade and activation of apoptosis, respectively.

View Article and Find Full Text PDF

The incidence of cutaneous melanoma is steadily increasing. Although several molecular abnormalities have been associated with melanoma progression, the mechanisms underlying the differential gene expression are still largely unknown and targeted therapies are not yet available. Noncoding small RNAs, termed microRNAs (miR), have been recently reported to play important roles in major cellular processes, including those involved in cancer development and progression.

View Article and Find Full Text PDF

The synthetic triterpenoid CDDO-Im-induced apoptosis of patient-derived AML blasts: 11/25 AMLs were highly sensitive, while the remaining were moderately sensitive to CDDO-Im. The addition of TRAIL significantly potentiated the cytotoxic effect of CDDO-Im, through mechanisms involving the induction of TRAIL-R1/TRAIL-R2 and downmodulation of TRAIL-R3/TRAIL-R4. Biochemical studies showed that CDDO-Im: induced a rapid and marked GSH depletion and antioxidants (GSH or NAC) completely inhibited its pro-apoptotic effect; sequentially activated caspase-8, -9 and -3; caspase inhibitors partially protected AML blasts from CDDO-Im-induced apoptosis; resistance of AML blasts to CDDO-Im-induced apoptosis correlated with low caspase-8/FADD and high Bcl-X(L) expression in leukemic blasts.

View Article and Find Full Text PDF

We describe a pathway by which the master transcription factor PU.1 regulates human monocyte/macrophage differentiation. This includes miR-424 and the transcriptional factor NFI-A.

View Article and Find Full Text PDF

Lung carcinoma is often incurable and remains the leading cancer killer in both men and women. Recent evidence indicates that tumors contain a small population of cancer stem cells that are responsible for tumor maintenance and spreading. The identification of the tumorigenic population that sustains lung cancer may contribute significantly to the development of effective therapies.

View Article and Find Full Text PDF

Human embryonic stem cells (hESCs) may become important for cardiac repair due to their potentially unlimited ability to generate cardiomyocytes (CMCs). Moreover, genetic manipulation of hESC-derived CMCs would be a very promising technique for curing myocardial disorders. At the present time, however, inducing the differentiation of hESCs into CMCs is extremely difficult and, therefore, an easy and standardizable technique is needed to evaluate differentiation strategies.

View Article and Find Full Text PDF

In human beta-thalassemia, the imbalance between alpha- and non-alpha-globin chains causes ineffective erythropoiesis, hemolysis, and anemia: this condition is effectively treated by an enhanced level of fetal hemoglobin (HbF). In spite of extensive studies on pharmacologic induction of HbF synthesis, clinical trials based on HbF reactivation in beta-thalassemia produced inconsistent results. Here, we investigated the in vitro response of beta-thalassemic erythroid progenitors to kit ligand (KL) in terms of HbF reactivation, stimulation of effective erythropoiesis, and inhibition of apoptosis.

View Article and Find Full Text PDF

The present study explored the sensitivity of leukaemic blasts derived from 30 acute myeloid leukaemia (AML) patients to Bortezomib. Bortezomib induced apoptosis of primary AML blasts: 18/30 AMLs were clearly sensitive to the proapoptotic effects of Bortezomib, while the remaining cases were moderately sensitive to this molecule. The addition of tumour necrosis factor-related-apoptosis-inducing ligand, when used alone, did not induce apoptosis of AML blasts and further potentiated the cytotoxic effects of Bortezomib.

View Article and Find Full Text PDF

We investigated the role of microRNAs (miRNA) 17-5p, 20a and 106a in monocytic differentiation and maturation. In unilineage monocytic culture generated by haematopoietic progenitor cells these miRNAs are downregulated, whereas the transcription factor acute myeloid leukaemia-1 (AML1; also known as Runt-related transcription factor 1, Runx1) is upregulated at protein but not mRNA level. As miRNAs 17-5p, 20a and 106a bind the AML1 mRNA 3'UTR, their decline may unblock AML1 translation.

View Article and Find Full Text PDF