The MHC class I-like Fc receptor (FcRn) is an intracellular trafficking Fc receptor that is uniquely responsible for the extended serum half-life of antibodies of the IgG subclass and their ability to transport across cellular barriers. By performing these functions, FcRn affects numerous facets of antibody biology and pathobiology. Its critical role in controlling IgG pharmacokinetics has been leveraged for the design of therapeutic antibodies and related biologics.
View Article and Find Full Text PDFFilamentous phage display has been extensively used to select proteins with binding properties of specific interest. Although many different display platforms using filamentous phage have been described, no comprehensive comparison of their abilities to display similar proteins has been conducted. This is particularly important for the display of cytoplasmic proteins, which are often poorly displayed with standard filamentous phage vectors.
View Article and Find Full Text PDFBileaflet mechanical heart valves, which exhibit hemodynamic performance fairly similar to that of native valves, can be investigated by the analysis of their closing sounds. Signal spectra calculated from the closing sounds are characterized by specific features that are suitable for the functional evaluation of the valves. Five commercial bileaflet mechanical heart valves were studied under different conditions that were simulated in vitro using a Sheffield pulse duplicator for the aortic position.
View Article and Find Full Text PDFA method is described for the site-directed manipulation of single filamentous bacteriophages, by using phage display technology and atomic force microscopy. f1 filamentous bacteriophages were genetically engineered to display His-tags on their pIX tail. Following adsorption on nitrilotriacetate-terminated surfaces, force spectroscopy with tips bearing monoclonal anti-pIII antibodies was used to pull on individual phages via their pIII head.
View Article and Find Full Text PDFFilamentous phage do not display cytoplasmic proteins very effectively. As T7 is a cytoplasmic phage, released by cell lysis, it has been prospected as being more efficient for the display of such proteins. Here we investigate this proposition, using a family of GFP-based cytoplasmic proteins that are poorly expressed by traditional phage display.
View Article and Find Full Text PDFIn the use of non-antibody proteins as affinity reagents, diversity has generally been derived from oligonucleotide-encoded random amino acids. Although specific binders of high-affinity have been selected from such libraries, random oligonucleotides often encode stop codons and amino acid combinations that affect protein folding. Recently it has been shown that specific antibody binding loops grafted into heterologous proteins can confer the specific antibody binding activity to the created chimeric protein.
View Article and Find Full Text PDFDeficits in cholinergic systems innervating cerebral cortex are associated with cognitive impairment during senescence and in age-related neurodegenerative pathologies. However, little is known about the role of cholinergic pathways in modulating cortical plasticity. Basal forebrain cholinergic neurons are a major target for nerve-growth factor (NGF).
View Article and Find Full Text PDFAlthough nerve growth factor (NGF) is a crucial factor in the activity-dependent development and plasticity of visual cortex, its role in synaptic efficacy changes is largely undefined. We demonstrate that the maintenance phase of long-term potentiation (LTP) is blocked by local application of exogenous NGF in rat visual cortex at an early stage of postnatal development. Long-term depression (LTD) and bidirectional plasticity are unaffected.
View Article and Find Full Text PDF