Publications by authors named "Pervikov A"

A novel approach to electric explosion of intertwined wires to obtain homogeneous powder mixtures intended for preparing feedstock for extrusion 3D printing has been applied. The powder were composed of spherical micron- and nano-sized W/Cu particles in-situ alloyed by Zn and Ni during electric explosion of intertwined dissimilar metal wires is offered. The mean particle size measured by micron-sized particles was not more than 20 μm.

View Article and Find Full Text PDF

The water oxidation of bimetallic Al/Ag nanoparticles has been shown to yield nanoscale structures whose morphology, phase composition and textural characteristics are determined by the synthesis conditions. Flower-like nanoscale structures with silver nanoparticles, with an average size of 17 nm, are formed in water at 60 °C. Under hydrothermal conditions at temperatures of 200 °C and a pressure of 16 MPa, boehmite nanoplatelets with silver nanoparticles, with an average size of 22 nm, are formed.

View Article and Find Full Text PDF

Bulk samples with high mechanical strength reaching 1000 MPa were obtained from electroexplosive Fe-FeO nanoparticles containing 81 wt. % Fe. Maximum strength is achieved by consolidation of the nanoparticles by isostatic pressing followed by vacuum sintering at 700 °C.

View Article and Find Full Text PDF

The paper studies patterns of interaction of electroexplosive Co nanoparticles with air oxygen during heating. The characteristics of Co nanoparticles and composite Co/CoO/CoO nanoparticles formed as a result of oxidation were studied using transmission electron microscopy, X-ray phase analysis, thermogravimetric analysis, differential scanning calorimetry, and vibrating sample magnetometry. It was established that nanoparticles with similar morphology in the form of hollow spheres with different content of Co, CoO, and CoO can be produced by varying oxidation temperatures.

View Article and Find Full Text PDF

Electrical explosion of aluminum wires has been shown to be a versatile method for the preparation of bimodal nano/micro powders. The energy input into the wire has been found to determine the relative content of fine and coarse particles in bimodal aluminum powders. The use of aluminum bimodal powders has been shown to be promising for the development of high flowability feedstocks for metal injection molding and material extrusion additive manufacturing.

View Article and Find Full Text PDF

The mechanical and tribological properties of polyetheretherketone (PEEK)- and PEEK + PTFE (polytetrafluoroethylene)-based composites loaded with and four types of nanoparticles (carbonaceous, metallic, bimetal oxide, and ceramic) under metal- and ceramic-polymer tribological contact conditions were investigated. It was found that loading with the nanofillers in a small content (0.3 wt.

View Article and Find Full Text PDF

Enhanced activity in low-temperature water-gas shift (LT-WGS) reaction of some ceramometal catalysts compared to conventional Cu-Zn-Al oxide catalyst was demonstrated. Porous ceramometals were synthesized from powdered CuAl alloys prepared by mechanical alloying with the addition of either CuAl powders produced by current spark explosion of Cu+Al wires or CuZnAl oxide obtained by coprecipitation. Their structural, microstructural, and textural characteristics were examined by means of X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray spectrometry, NMR, and adsorption methods, and catalytic properties were studied in the LT-WGS reaction.

View Article and Find Full Text PDF

The design of advanced nanostructured materials with predetermined physical properties requires knowledge of the relationship between these properties and the internal structure of the material at the nanoscale, as well as the dependence of the internal structure on the production (synthesis) parameters. This work is the first report of computer-aided analysis of high pressure consolidation (cold sintering) of bimetallic nanoparticles of two immiscible (Fe and Cu) metals using the embedded atom method (EAM). A detailed study of the effect of cold sintering parameters on the internal structure and properties of bulk Fe-Cu nanocomposites was conducted within the limitations of the numerical model.

View Article and Find Full Text PDF

Background: Recent advances in nanotechnology make it possible to create nanomaterials with novel microstructure and unique physicochemical properties. Different structures of nanoparticles of immiscible elements can be synthesized using chemical, mechanochemical or physical methods. The present review is devoted to contemporary state of the studies on the methods to produce bimetallic nanoparticles formed of immiscible metals.

View Article and Find Full Text PDF