Publications by authors named "Perumal Suguna"

Article Synopsis
  • The study focuses on the knowledge and practices of primary care physicians regarding metabolic-associated fatty liver disease (MAFLD) in Seremban District, Malaysia.
  • A survey of 240 medical officers revealed that while 85.4% demonstrated good knowledge about MAFLD, familiarity with non-invasive liver fibrosis tests and specific treatments was low.
  • The conclusion highlights a need for improvement in the management of MAFLD, specifically concerning certain medications and dietary recommendations.
View Article and Find Full Text PDF

In this study, the fruit of Terminalia chebula, commonly known as chebulic myrobalan, is used as the precursor for carbon for its application in supercapacitors. The Terminalia chebula biomass-derived sponge-like porous carbon (TC-SPC) is synthesized using a facile and economical method of pyrolysis. TC-SPC thus obtained is subjected to XRD, FESEM, TEM, HRTEM, XPS, Raman spectroscopy, ATR-FTIR, and nitrogen adsorption-desorption analyses for their structural and chemical composition.

View Article and Find Full Text PDF

Here, we prepared sulfur and nitrogen self-doped carbon dots derived from garlic peel extract (GPSNCDs) using a hydrothermal method. The as-synthesized GPSNCDs were confirmed using Fourier-transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. The analytical techniques indicate that the resulting GPSNCDs exhibit distinct emissive carbon-core with functionalities (owing to various ligands in the GPSNCDs).

View Article and Find Full Text PDF

Hydrogen energy is converted to electricity through fuel cells, aided by nanostructured materials. Fuel cell technology is a promising method for utilizing energy sources, ensuring sustainability, and protecting the environment. However, it still faces drawbacks such as high cost, operability, and durability issues.

View Article and Find Full Text PDF

HO is essential for life to exist on earth; it is important to guarantee both the quality and supply of water to satisfy world demand. However, it became contaminated by a number of hazardous, inorganic industrial pollutants, which caused a number of issues like irrigation activities and unsafe human ingestion. Long-term exposure to harmful substances can result in respiratory, immunological, and neurological illnesses, cancer, and problems during pregnancy.

View Article and Find Full Text PDF

Preparing electrode materials plays an essential role in the fabrication of high-performance supercapacitors. In general, heteroatom doping in carbon-based electrode materials enhances the electrochemical properties. Herein, nitrogen, oxygen, and sulfur co-doped porous carbon (PC) materials were prepared by direct pyrolysis of (AO) nut-skin waste for high-performance supercapacitor applications.

View Article and Find Full Text PDF

Here, a simple one-step hydrothermal-assisted carbonization process was adopted for the preparation of nitrogen/phosphorous-doped carbon dots from a water-soluble polymer, poly 2-(methacryloyloxy)ethyl phosphorylcholine (PMPC). By the free-radical polymerization method, PMPC was synthesized using 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) and 4,4'-azobis (4-cyanovaleric acid). The water-soluble polymers, PMPC, that have nitrogen/phosphorus moieties are used to prepare carbon dots (P-CDs).

View Article and Find Full Text PDF

Chebulic Myrobalan is the main ingredient in the Ayurvedic formulation Triphala, which is used for kidney and liver dysfunctions. Herein, natural nitrogen-doped carbon dots (NN-CDs) were prepared from the hydrothermal carbonization of Chebulic Myrobalan and were demonstrated to sense heavy metal ions in an aqueous medium. Briefly, the NN-CDs were developed from Chebulic Myrobalan by a single-step hydrothermal carbonization approach under a mild temperature (200 °C) without any capping and passivation agents.

View Article and Find Full Text PDF

Polymer nanoparticles (PNPs) are generally formed by the spontaneous self-assembly of polymers that vary size from 1 to 1000 nm [...

View Article and Find Full Text PDF

In this study, sustainable, low-cost, and environmentally friendly biomass () was employed as a precursor for the formation of nitrogen-doped carbon dots (N-CDs). The hydrothermally assisted fruit-derived N-CDs (TC-CDs) emitted different bright fluorescent colors under various excitation wavelengths. The prepared TC-CDs showed a spherical morphology with a narrow size distribution and excellent water dispensability due to their abundant functionalities, such as oxygen- and nitrogen-bearing molecules on the surfaces of the TC-CDs.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) are often used as antibacterial agents. Here, graphene-silver nanoparticles (G-Ag) and graphene-silver nanoparticles poly-vinylpyrrolidone (G-AgPVPy) were prepared by chemical reduction and in-situ polymerization of vinylpyrrolidone (VPy). The prepared G-Ag and G-AgPVPy composites were characterized using various techniques.

View Article and Find Full Text PDF

Research on the synthesis of water-soluble polymers has accelerated in recent years, as they are employed in many bio-applications. Herein, the synthesis of poly[2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (PSB) by free radical polymerization in a sonication bath is described. PSB and iron oxide nanoparticles (IONPs) were simultaneously stabilized on the graphene surface.

View Article and Find Full Text PDF

In this study, calcium carbonate nanoparticles (CCNPs) and calcium oxide nanoparticles (CONPs) are synthesized by the carbonization/calcination of calcium oleate. CONPs are an essential inorganic material, and they are used as catalysts and as effective chemisorbents for toxic gases. CCNPs are widely used in plastics, printing ink, and medicines.

View Article and Find Full Text PDF

Recent research is focused on biomass-derived porous carbon materials for energy harvesting (hydrogen evolution reaction) because of their cost-effective synthesis, enriched with heteroatoms, lightweight, and stable properties. Here, the synthesis of porous carbon (PC) materials from lotus seedpod (LP) and lotus stem (LS) is reported by the pyrolysis method. The porous and graphitic structure of the prepared LP-PC and LS-PC materials were confirmed by field emission scanning electron microscopy, transmission electron microscopy with selected area electron diffraction, X-ray diffraction, and nitrogen adsorption-desorption measurements.

View Article and Find Full Text PDF

Hydrogen is one of the cleanest renewable and environmentally friendly energy resource that can be generated through water splitting. However, hydrogen evolution occurs at high overpotential, and efficient hydrogen evolution catalysts are desired to replace state-of-the-art catalysts such as platinum. In the present work, a novel molybdenum disulfide decorated banana peel porous carbon (MoS@BPPC) catalyst has been developed using banana peel carbon and molybdenum disulfide (MoS) for hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

Here, the controlled formation of platinum nanoparticles (PtNPs) and silver nanoparticles (AgNPs) using amine-functionalized multivalent ligands are reported. The effects of reaction temperature and ligand multivalency on the growth kinetics, size, and shape of PtNPs and AgNPs were systematically studied by performing a stepwise and a one-step process. PtNPs and AgNPs were prepared in the presence of amine ligands using platinum (II) acetylacetonate and silver (I) acetylacetonate, respectively.

View Article and Find Full Text PDF

Modernized lifestyle and increased industrialization threaten living organisms because of the pollutants released from industries and household wastes. The presence of even small amounts of pollutants (organic pollutants (OPs) and inorganic pollutants-heavy metals (HMs)) shows significant effects. Thus wastewater treatment is urgently needed before being subjected to use.

View Article and Find Full Text PDF

Self-assembly of amphiphilic polymers with hydrophilic and hydrophobic units results in micelles (polymeric nanoparticles), where polymer concentrations are above critical micelle concentrations (CMCs). Recently, micelles with metal nanoparticles (MNPs) have been utilized in many bio-applications because of their excellent biocompatibility, pharmacokinetics, adhesion to biosurfaces, targetability, and longevity. The size of the micelles is in the range of 10 to 100 nm, and different shapes of micelles have been developed for applications.

View Article and Find Full Text PDF

A simple, low-cost, and green route for the preparation of lotus carbon (LC) materials using lotus parts including leaves, flowers, fruits (seed pods), and stems as a renewable precursor is reported. Different porous carbons, leaf-carbon (LF-carbon), flower-carbon (FL-carbon), fruit-carbon (FR-carbon), and stem-carbon (ST-carbon) were synthesized from different parts of the lotus plant by simple carbonization method. The as-synthesized LC materials were well-characterized by many techniques such as electron microscopy and spectroscopy techniques, X-ray diffraction, and BET-surface area analysis.

View Article and Find Full Text PDF

Growing global biowaste and its environmental issues challenge the need for converting biowastes into a beneficial product. Among the biowaste, here kiwi fruit (Actinidia Deliciosa) peels are considered for the preparation of carbon dots (CDs). Using a green one-pot hydrothermal-carbonization method, kiwi fruit peels were effectively converted into valuable kiwi fruit peel carbon dots (KFP-CDs).

View Article and Find Full Text PDF

In this study, a novel and sustainable approach was used to synthesize nitrogen-doped carbon dots (NCDs) from the waste biomass of Poa Pratensis (Kentucky bluegrass (KB)) by a facile hydrothermal method. The prepared KBNCDs were subjected to various characterization techniques, including X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and Fourier-transform infrared spectroscopy to verify the formation of carbon dots and their surface functional groups. The KBNCDs exhibited good hydrophilic fluorescence (FLU) properties with an acceptable quantum yield (7%).

View Article and Find Full Text PDF

Heavy metal ions (HMI) have attracted worldwide concern due to their serious environmental pollution which led to the risk of health conditions. From Red Malus floribunda fruits, nitrogen-doped carbon dots (N-CDs) were prepared, followed by hybrid-spherical shaped hydrogel particles (CGCDs) were prepared. The prepared CGCDs were utilized as adsorbents for HMI-(Hg(II), Cd(II), Pb(II), and Cr(III)) from water.

View Article and Find Full Text PDF

Graphene is an excellent 2D material that has extraordinary properties such as high surface area, electron mobility, conductivity, and high light transmission. Polymer composites are used in many applications in place of polymers. In recent years, the development of stable graphene dispersions with high graphene concentrations has attracted great attention due to their applications in energy, bio-fields, and so forth.

View Article and Find Full Text PDF

Here, biocompatible graphene (G) nanocarriers decorated with iron oxide nanoparticles (IONPs) were prepared using 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) and poly(ethylene glycol) monomethacrylate (PEGMA). For this, we report the use of graphite directly instead of graphene oxide or reduced graphene oxide. Graphene nanocarrier ( GIOPMPC) was prepared in one-pot by copolymerization of MPC and PEGMA monomers in the presence of IONPs and G.

View Article and Find Full Text PDF