Objective: The objective of this review is to provide the conclusions from the American Association of Colleges of Pharmacy (AACP) Council of Deans (COD) Taskforce on Research and Scholarship.
Findings: The charges and the findings of the committee are: (1) Define the scholarship needs/opportunities to strengthen the outputs. The committee recommends that AACP update its definitions of research/scholarship to include discovery, integration, application/practice, and teaching/learning.
Biotechnol Appl Biochem
December 2021
Nitroreductases, enzymes found mostly in bacteria and also in few eukaryotes, use nicotinamide adenine dinucleotide (NADH) or nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor for their activity and metabolize an enormous list of a diverse nitro group-containing compounds. Nitroreductases that are capable of metabolizing nitroaromatic and nitro heterocyclic compounds have drawn great attention in recent years owing to their biotechnological, biomedical, environmental, and human impact. These enzymes attracted medicinal chemists and pharmacologists because of their prodrug selectivity for activation/reduction of nitro compounds that wipe out pathogens/cancer cells, leaving the host/normal cells unharmed.
View Article and Find Full Text PDFDrug delivery by direct intraductal administration can achieve high local drug concentration in the breast and minimize systemic levels. However, the clinical application of this approach for breast cancer treatment is limited by the rapid clearance of the drug from the ducts. With the goal of developing strategies to prolong drug retention in the breast, this study was focused on understanding the influence of particle size and formulation on breast duct and lymph node retention.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2019
The goal of this study was to develop bioadhesive food protein nanoparticles using zein (Z), a hydrophobic corn protein, as the core and whey protein (WP) as the shell for oral pediatric drug delivery applications. Lopinavir (LPV), an antiretroviral drug, and fenretinide, an investigational anticancer agent, were used as model drugs in the study. The particle size of ZWP nanoparticles was in the range of 200-250 nm, and the drug encapsulation efficiency was >70%.
View Article and Find Full Text PDFPurpose: Almost all breast cancers originate from epithelial cells lining the milk ducts in the breast. To this end, the study investigated the feasibility of localized transdermal delivery of α-santalol, a natural chemopreventive agent to the breast.
Methods: Different α-santalol formulations (cream, solution and microemulsion) were developed and the in vitro permeability was studied using excised animal (porcine and rat) and human breast skin/mammary papilla (nipple).
Glutathione disulfide (GSSG) is the oxidized form of glutathione (GSH). GSH is a tripeptide present in the biological system in mM concentration and is the major antioxidant in the body. An increase in GSSG reflects an increase in intracellular oxidative stress and is associated with disease sates.
View Article and Find Full Text PDFThe study was aimed at systematically investigating the influence of shell composition on the particle size, stability, release, cell uptake, permeability, and in vivo gastrointestinal distribution of food protein based nanocarriers for oral delivery applications. Three different core-shell nanocarriers were prepared using food-grade biopolymers including zein-casein (ZC) nanoparticles, zein-lactoferrin (ZLF), nanoparticles and zein-PEG (ZPEG) micelles. Nile red was used as a model hydrophobic dye for in vitro studies.
View Article and Find Full Text PDFLocalized drug delivery to the breast can maximize drug concentration at the target site and minimize systemic drug distribution. To this end, the study explored the feasibility of delivering macromolecules to the breast through mammary papilla (nipple). The in vitro penetration of model macromolecules (inulin, dextran, ovalbumin, and bovine serum albumin) varying in molecular weight from 5 to 67 kDa was studied using excised porcine and human mammary papilla.
View Article and Find Full Text PDFMajority of breast cancers originate from epithelial cells in the duct and lobules in the breast. Current systemic treatments for breast cancer are associated with significant systemic side effects, thus warranting localized drug delivery approaches. The aim of this study was to investigate the influence of hydroalcoholic vehicle on topical delivery of 4-hydroxy tamoxifen (4-HT) through the mammary papilla (nipple).
View Article and Find Full Text PDFThe study was aimed at investigating localized topical drug delivery to the breast via mammary papilla (nipple). 5-fluorouracil (5-FU) and estradiol (EST) were used as model hydrophilic and hydrophobic compounds respectively. Porcine and human nipple were used for in-vitro penetration studies.
View Article and Find Full Text PDFThe study was aimed at investigating the feasibility of using a poly (amidoamine) (PAMAM) dendrimer as a carrier for topical iontophoretic delivery of an antisense oligonucleotide (ASO). Bcl-2, an anti-apoptotic protein implicated in skin cancer, was used as the model target protein to demonstrate the topical gene silencing approach. Confocal laser scanning microscopy studies demonstrated that the iontophoretically delivered ASO-dendrimer complex can reach the viable epidermis in porcine skin.
View Article and Find Full Text PDFWorldwide, breast cancer remains as one of the most common cancer diagnosis and cause of cancer related death among women. Fortunately, nanomedicine has brought forth new potential and hope in breast cancer research. The extremely small size of nanoparticles makes it advantageous and potentially superior to use in tumor detection and imaging.
View Article and Find Full Text PDFSkin Pharmacol Physiol
March 2014
Despite its remarkable barrier function, the skin remains an attractive site for systemic drug delivery given its easy accessibility, large surface area and the possibility to bypass the gastrointestinal tract and the liver and so modify drug absorption kinetics. The pioneering work of Scheuplein, Higuchi and others in the 1960s helped to explain the processes involved in passive percutaneous absorption and led to the development of mathematical models to describe transdermal drug delivery. The intervening years have seen these theories turned to practice and a significant number of transdermal systems are now available including some that employ active drug delivery.
View Article and Find Full Text PDFJ Biomed Nanotechnol
January 2013
The main objective of this study was to investigate the potential of calcium phosphate (CAP) nanoparticles for transcutaneous vaccine delivery. CAP nanoparticles were prepared by nanoprecipitation method followed by sequential adsorption of sugars and ovalbumin. Nanoparticles were characterized using dynamic light scattering, XRD, ATR-FTIR, and microscopy methods.
View Article and Find Full Text PDFNovel biodegradable micelles were synthesized by conjugating methoxy poly(ethylene glycol) (mPEG) to zein, a biodegradable hydrophobic plant protein. The mPEG-zein micelles were in the size range of 95-125 nm with a low CMC (5.5 × 10(-2) g/L).
View Article and Find Full Text PDFAAPS PharmSciTech
September 2012
The main objective of the present study was to investigate the influence of various formulation parameters on the preparation of zein nanoparticles. 6,7-dihydroxycoumarin (DHC) was used as a model hydrophobic compound. The influence of pH of the aqueous phase, buffer type, ionic strength, surfactant, and zein concentration on particle size, polydispersity index, and zeta potential of DHC-loaded zein nanoparticles were studied.
View Article and Find Full Text PDFSkin is an important site for local or systemic application of drugs. However, a majority of drugs have poor permeability through the skin's topmost layer, stratum corneum (SC). The aim of this study was to identify safe and smaller peptides that could enhance the skin penetration of drug molecules.
View Article and Find Full Text PDFPurpose: To investigate skin penetration of poly (amidoamine) (PAMAM) dendrimers as a function of surface charge and molecular weight in presence and absence of iontophoresis.
Methods: Dendrimers were labeled with fluoroisothiocynate (FITC); skin penetration of dendrimers was studied using excised porcine skin in-vitro. Skin penetration of FITC-labeled dendrimers was quantified using confocal laser scanning microscope (CLSM).
J Biomed Nanotechnol
August 2010
Zein is a hydrophobic water insoluble plant protein and the main goal of the present study was to prepare zein nanoparticles using pH controlled nanoprecipitation method. Nanoparticle characteristics such as size, polydispersity index (PI), zeta potential, and encapsulation efficiency were studied using 6, 7-dihydroxycoumarin, as a model hydrophobic compound. Lecithin and pluronic F68 were used as stabilizers.
View Article and Find Full Text PDFDrug release from hyperbranched polymer-drug conjugates and the subsequent activity are influenced by the branching architecture and the linker. To gain an understanding of these effects, we used hyperbranched polyol and G4-OH polyamidoamine (PAMAM) dendrimer with methyl prednisolone (MP) as the model drug. The drug was conjugated to dendrimer or polyol using a glutaric acid (GA) or a succinic acid (SA) spacer.
View Article and Find Full Text PDFThe study investigates the influence of surface charge, generation and concentration of poly(amidoamine) (PAMAM) dendrimers on skin permeation of a model hydrophilic drug, 5-fluorouracil (5FU). Permeation studies were performed using excised porcine skin in a Franz diffusion cell. Saturated concentration of 5FU in isopropyl myristate was applied on the skin after pretreatment with dendrimers and (14)C labeled 5FU was analyzed using a liquid scintillation counter.
View Article and Find Full Text PDFThe purpose of this investigation is to characterize nevirapine from commercial samples and samples crystallized from different solvents under various conditions. The solid-state behavior of nevirapine samples was investigated using a variety of complementary techniques such as microscopy (optical, polarized, hot stage microscopy), differential scanning calorimeter, thermogravimetric analysis, Fourier transform infrared spectroscopy and powder X-ray diffractometry. The commercial samples of nevirapine had the same polymorphic crystalline form with an anhedral crystal habit.
View Article and Find Full Text PDF