While mostly de novo truncating variants in SCAF4 were recently identified in 18 individuals with variable neurodevelopmental phenotypes, knowledge on the molecular and clinical spectrum is still limited. We assembled data on 50 novel individuals with SCAF4 variants ascertained via GeneMatcher and personal communication. With detailed evaluation of clinical data, in silico predictions and structural modeling, we further characterized the molecular and clinical spectrum of the autosomal dominant SCAF4-associated neurodevelopmental disorder.
View Article and Find Full Text PDFAn increasing number of individuals with intellectual developmental disorder (IDD) and heterozygous variants in BCL11A are identified, yet our knowledge of manifestations and mutational spectrum is lacking. To address this, we performed detailed analysis of 42 individuals with BCL11A-related IDD (BCL11A-IDD, a.k.
View Article and Find Full Text PDFDevelopmental and epileptic encephalopathies (DEEs) feature altered brain development, developmental delay and seizures, with seizures exacerbating developmental delay. Here we identify a cohort with biallelic variants in DENND5A, encoding a membrane trafficking protein, and develop animal models with phenotypes like the human syndrome. We demonstrate that DENND5A interacts with Pals1/MUPP1, components of the Crumbs apical polarity complex required for symmetrical division of neural progenitor cells.
View Article and Find Full Text PDFFRY-like transcription coactivator (FRYL) belongs to a Furry protein family that is evolutionarily conserved from yeast to humans. The functions of FRYL in mammals are largely unknown, and variants in FRYL have not previously been associated with a Mendelian disease. Here, we report fourteen individuals with heterozygous variants in FRYL who present with developmental delay, intellectual disability, dysmorphic features, and other congenital anomalies in multiple systems.
View Article and Find Full Text PDFDevelopmental and epileptic encephalopathies (DEEs) are a heterogenous group of epilepsies in which altered brain development leads to developmental delay and seizures, with the epileptic activity further negatively impacting neurodevelopment. Identifying the underlying cause of DEEs is essential for progress toward precision therapies. Here we describe a group of individuals with biallelic variants in and determine that variant type is correlated with disease severity.
View Article and Find Full Text PDFPPFIA3 encodes the protein-tyrosine phosphatase, receptor-type, F-polypeptide-interacting-protein-alpha-3 (PPFIA3), which is a member of the LAR-protein-tyrosine phosphatase-interacting-protein (liprin) family involved in synapse formation and function, synaptic vesicle transport, and presynaptic active zone assembly. The protein structure and function are evolutionarily well conserved, but human diseases related to PPFIA3 dysfunction are not yet reported in OMIM. Here, we report 20 individuals with rare PPFIA3 variants (19 heterozygous and 1 compound heterozygous) presenting with developmental delay, intellectual disability, hypotonia, dysmorphisms, microcephaly or macrocephaly, autistic features, and epilepsy with reduced penetrance.
View Article and Find Full Text PDFHeterozygous pathogenic variants in POLR1A, which encodes the largest subunit of RNA Polymerase I, were previously identified as the cause of acrofacial dysostosis, Cincinnati-type. The predominant phenotypes observed in the cohort of 3 individuals were craniofacial anomalies reminiscent of Treacher Collins syndrome. We subsequently identified 17 additional individuals with 12 unique heterozygous variants in POLR1A and observed numerous additional phenotypes including neurodevelopmental abnormalities and structural cardiac defects, in combination with highly prevalent craniofacial anomalies and variable limb defects.
View Article and Find Full Text PDFATP1A3 encodes the α3 subunit of the sodium-potassium ATPase, one of two isoforms responsible for powering electrochemical gradients in neurons. Heterozygous pathogenic ATP1A3 variants produce several distinct neurological syndromes, yet the molecular basis for phenotypic variability is unclear. We report a novel recurrent variant, ATP1A3(NM_152296.
View Article and Find Full Text PDFencodes the Protein-Tyrosine Phosphatase, Receptor-Type, F Polypeptide-Interacting Protein Alpha-3 (PPFIA3), which is a member of the LAR protein-tyrosine phosphatase-interacting protein (liprin) family involved in synaptic vesicle transport and presynaptic active zone assembly. The protein structure and function are well conserved in both invertebrates and vertebrates, but human diseases related to PPFIA3 dysfunction are not yet known. Here, we report 14 individuals with rare mono-allelic variants presenting with features including developmental delay, intellectual disability, hypotonia, autism, and epilepsy.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2022
Background And Objectives: encodes the voltage-gated potassium channel EAG2/Kv10.2. We aimed to delineate the neurodevelopmental and epilepsy phenotypic spectrum associated with de novo variants.
View Article and Find Full Text PDFBi-allelic variants in Iron-Sulfur Cluster Scaffold (NFU1) have previously been associated with multiple mitochondrial dysfunctions syndrome 1 (MMDS1) characterized by early-onset rapidly fatal leukoencephalopathy. We report 19 affected individuals from 10 independent families with ultra-rare bi-allelic NFU1 missense variants associated with a spectrum of early-onset pure to complex hereditary spastic paraplegia (HSP) phenotype with a longer survival (16/19) on one end and neurodevelopmental delay with severe hypotonia (3/19) on the other. Reversible or irreversible neurological decompensation after a febrile illness was common in the cohort, and there were invariable white matter abnormalities on neuroimaging.
View Article and Find Full Text PDFPurpose: Nonmuscle myosin II complexes are master regulators of actin dynamics that play essential roles during embryogenesis with vertebrates possessing 3 nonmuscle myosin II heavy chain genes, MYH9, MYH10, and MYH14. As opposed to MYH9 and MYH14, no recognizable disorder has been associated with MYH10. We sought to define the clinical characteristics and molecular mechanism of a novel autosomal dominant disorder related to MYH10.
View Article and Find Full Text PDFPOLE is a pleiotropic gene with phenotypic expression of pathogenic variants depending on the type of variant, impact on the protein, and mode of inheritance. Heterozygous missense variants located within the exonuclease domain have been shown to result in polymerase proofreading-associated polyposis (PPAP) which is characterized by an increased risk for colon polyps and colorectal cancer. Biallelic variants resulting in markedly reduced amounts of normal protein have been reported in two separate recessive pediatric syndromes: facial dysmorphism, immunodeficiency, livedo, and short stature as well as intrauterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenital, and genital anomalies.
View Article and Find Full Text PDFThe pre-mRNA-processing factor 8, encoded by PRPF8, is a scaffolding component of a spliceosome complex involved in the removal of introns from mRNA precursors. Previously, heterozygous pathogenic variants in PRPF8 have been associated with autosomal dominant retinitis pigmentosa. More recently, PRPF8 was suggested as a candidate gene for autism spectrum disorder due to the enrichment of sequence variants in this gene in individuals with neurodevelopmental disorders.
View Article and Find Full Text PDFLoss-of-function variants in () cause Siderius X-linked intellectual disability (ID) syndrome, hereafter called PHF8-XLID. PHF8 is a histone demethylase that is important for epigenetic regulation of gene expression. PHF8-XLID is an under-characterized disorder with only five previous reports describing different predicted loss-of-function variants in eight individuals.
View Article and Find Full Text PDFNeurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome.
View Article and Find Full Text PDFCalcium (Ca) is a universal second messenger involved in synaptogenesis and cell survival; consequently, its regulation is important for neurons. ATPase plasma membrane Ca transporting 1 (ATP2B1) belongs to the family of ATP-driven calmodulin-dependent Ca pumps that participate in the regulation of intracellular free Ca. Here, we clinically describe a cohort of 12 unrelated individuals with variants in ATP2B1 and an overlapping phenotype of mild to moderate global development delay.
View Article and Find Full Text PDFSpermatogenesis-associated 5 like 1 (SPATA5L1) represents an orphan gene encoding a protein of unknown function. We report 28 bi-allelic variants in SPATA5L1 associated with sensorineural hearing loss in 47 individuals from 28 (26 unrelated) families. In addition, 25/47 affected individuals (53%) presented with microcephaly, developmental delay/intellectual disability, cerebral palsy, and/or epilepsy.
View Article and Find Full Text PDF