Publications by authors named "Persiani E"

Background: Vascular calcification (VC) is a dynamic, tightly regulated process driven by cellular activity and resembling the mechanisms of bone formation, with specific molecules playing pivotal roles in its progression. We aimed to investigate the involvement of the bone morphogenic proteins (, , , and ) system in this process. Our study used an advanced in vitro model that simulates the biological environment of the vascular wall, assessing the ability of a phosphate mixture to induce the osteoblastic switch in human coronary artery smooth muscle cells (HCASMCs).

View Article and Find Full Text PDF

Vascular calcification (VC) is a cardiovascular disease characterized by calcium salt deposition in vascular smooth muscle cells (VSMCs). Standard in vitro models used in VC investigations are based on VSMC monocultures under static conditions. Although these platforms are easy to use, the absence of interactions between different cell types and dynamic conditions makes these models insufficient to study key aspects of vascular pathophysiology.

View Article and Find Full Text PDF

Microplastics (MPs) are recognized as a major environmental problem due to their ubiquitous presence in ecosystems and bioaccumulation in food chains. Not only humans are continuously exposed to these pollutants through ingestion and inhalation, but recent findings suggest they may trigger vascular inflammation and potentially worsen the clinical conditions of cardiovascular patients. Here we combine headspace analysis by needle trap microextraction-gas chromatography-mass spectrometry (HS-NTME-GC-MS) and biological assays to evaluate the effects of polystyrene, high- and low-density polyethylene MPs on phenotype, metabolic activity, and pro-inflammatory status of Vascular Smooth Muscle Cells (VSMCs) the most prominent cells in vascular walls.

View Article and Find Full Text PDF

Vascular calcification is a pathological chronic condition characterized by calcium crystal deposition in the vessel wall and is a recurring event in atherosclerosis, chronic kidney disease, and diabetes. The lack of effective therapeutic treatments opened the research to natural products, which have shown promising potential in inhibiting the pathological process in different experimental models. This study investigated the anti-calcifying effects of Quercetin and Berberine extracts on vascular smooth muscle cells (VSMCs) treated with an inorganic phosphate solution for 7 days.

View Article and Find Full Text PDF

Artificial Intelligence (AI) applications and Machine Learning (ML) methods have gained much attention in recent years for their ability to automatically detect patterns in data without being explicitly taught rules. Specific features characterise the ECGs of patients with Brugada Syndrome (BrS); however, there is still ambiguity regarding the correct diagnosis of BrS and its differentiation from other pathologies. This work presents an application of Echo State Networks (ESN) in the Recurrent Neural Networks (RNN) class for diagnosing BrS from the ECG time series.

View Article and Find Full Text PDF
Article Synopsis
  • Vascular calcification is a systemic issue where calcium builds up in blood vessel walls, requiring a sophisticated in vitro model for study.
  • The protocol outlines creating a dynamic co-culture system using endothelial and smooth muscle cells to simulate real vascular tissue in a lab setting.
  • Key steps include cell culture, using a double-flow bioreactor to mimic blood flow, inducing calcification, and assessing cell health and calcium levels.
View Article and Find Full Text PDF

Plastic use dramatically increased over the past few years. Besides obvious benefits, the consequent plastic waste and mismanagement in disposal have caused ecological problems. Plastic abandoned in the environment is prone to segregation, leading to the generation of microplastics (MPs) and nanoplastics (NPs), which can reach aquatic and terrestrial organisms.

View Article and Find Full Text PDF

Vascular calcification is a systemic disease contributing to cardiovascular morbidity and mortality. The pathophysiology of vascular calcification involves calcium salt deposition by vascular smooth muscle cells that exhibit an osteoblast-like phenotype. Multiple conditions drive the phenotypic switch and calcium deposition in the vascular wall; however, the exact molecular mechanisms and the connection between vascular smooth muscle cells and other cell types are not fully elucidated.

View Article and Find Full Text PDF

The overall increase in cardiovascular diseases and, specifically, the ever-rising exposure to cardiotoxic compounds has greatly increased animal testing; however, mainly due to ethical concerns related to experimental animal models, there is a strong interest in new models focused on the human heart. In recent years, human pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) emerged as reference cell systems for cardiac studies due to their biological similarity to primary CMs, the flexibility in cell culture protocols, and the capability to be amplified several times. Furthermore, the ability to be genetically reprogrammed makes patient-derived hiPSCs, a source for studies on personalized medicine.

View Article and Find Full Text PDF

Seipin deficiency causes severe congenital generalized lipodystrophy (CGL) and metabolic disease. However, how seipin regulates adipocyte development and function remains incompletely understood. We previously showed that seipin acts as a scaffold protein for AGPAT2, whose disruption also causes CGL.

View Article and Find Full Text PDF

Seipin (BSCL2/SPG17) is a key factor in lipid droplet (LD) biology, and its dysfunction results in severe pathologies, including the fat storage disease Berardinelli-Seip congenital lipodystrophy type 2, as well as several neurological seipinopathies. Despite its importance for human health, the molecular role of seipin is still enigmatic. Seipin is evolutionarily conserved from yeast to humans.

View Article and Find Full Text PDF

Background: It has been suggested that circulating fibrocytes and endothelial cells actively participate in the intense remodelling of the pulmonary vasculature in patients with idiopathic pulmonary fibrosis (IPF). Indeed, fibrotic areas exist that have fewer blood vessels, whereas adjacent non-fibrotic tissue is highly vascularized. The number of circulating endothelial cells (CEC) and endothelial progenitor cells (EPC) might reflect the balance between vascular injury and repair.

View Article and Find Full Text PDF

Lymphangioleiomyomatosis (LAM) is a rare and progressive cystic lung condition affecting approximately 3.4-7.5/million women, with an average lag time between symptom onset and diagnosis of upwards of 4 years.

View Article and Find Full Text PDF