Publications by authors named "Perry Schiro"

High-sensitivity flow cytometers have been developed for multi-parameter characterization of single extracellular vesicles (EVs), but performance varies among instruments and calibration methods. Here we compare the characterization of identical (split) EV samples derived from human colorectal cancer (DiFi) cells by three high-sensitivity flow cytometers, two commercial instruments, CytoFLEX/CellStream, and a custom single-molecule flow cytometer (SMFC). DiFi EVs were stained with the membrane dye di-8-ANEPPS and with PE-conjugated anti-EGFR or anti-tetraspanin (CD9/CD63/CD81) antibodies for estimation of EV size and surface protein copy numbers.

View Article and Find Full Text PDF

Rapid mutations within SARS-CoV-2 are driving immune escape, highlighting the need for in-depth and routine analysis of memory B cells (MBCs) to complement the important but limited information from neutralizing antibody (nAb) studies. In this study, we collected plasma samples and peripheral blood mononuclear cells (PBMCs) from 35 subjects and studied the nAb titers and the number of antigen-specific memory B cells at designated time points before and after vaccination. We developed an assay to use the MiSelect R II System with a single-use microfluidic chip to directly detect the number of spike-receptor-binding domain (RBD)-specific MBCs in PBMCs.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) in blood are accepted as a prognostic marker for patients with metastatic colorectal cancer (CRC). However, there is limited data on the use of CTCs as a prognostic marker for non-metastatic patients. In the current study, we used a rare cell automated analysis platform, the MiSelect R System, to enumerate CTCs from blood in non-metastatic CRC patients, and corelated the number of CTCs with the clinical staging and survival.

View Article and Find Full Text PDF

Isolation and analysis of circulating rare cells is a promising approach for early detection of cancer and other diseases and for prenatal diagnosis. Isolation of rare cells is usually difficult due to their heterogeneity as well as their low abundance in peripheral blood. We previously reported a two-stage ensemble-decision aliquot ranking platform (S-eDAR) for isolating circulating tumor cells from whole blood with high throughput, high recovery rate (>90%), and good purity (>70%), allowing detection of low surface antigen-expressing cancer cells linked to metastasis.

View Article and Find Full Text PDF

Isolation and analysis of circulating tumor cells (CTCs) from the blood of patients at risk of metastatic cancers is a promising approach to improving cancer treatment. However, CTC isolation is difficult due to low CTC abundance and heterogeneity. Previously, we reported an ensemble-decision aliquot ranking (eDAR) platform for the rare cell and CTC isolation with high throughput, greater than 90% recovery, and high sensitivity, allowing detection of low surface antigen-expressing cells linked to metastasis.

View Article and Find Full Text PDF

Rare cells, such as circulating tumor cells (CTCs), can be heterogeneous. The isolation and identification of rare cells with different phenotypes is desirable, for clinical and biological applications. However, CTCs exist in a complex biological environment, which complicates the isolation and identification of particular subtypes.

View Article and Find Full Text PDF

Ensemble-decision aliquot ranking (eDAR) is a sensitive and high-throughput method to analyze circulating tumor cells (CTCs) from peripheral blood. Here, we report the next generation of eDAR, where we designed and optimized a new hydrodynamic switching scheme for the active sorting step in eDAR, which provided fast cell sorting with an improved reproducibility and stability. The microfluidic chip was also simplified by incorporating a functional area for subsequent purification using microslits fabricated by standard lithography method.

View Article and Find Full Text PDF

Enumeration of circulating tumor cells (CTCs) has proved valuable for early detection and prognosis in cancer treatment. This paper describes an automated high-throughput counting method for CTCs based on microfluidics and line-confocal microscopy. Peripheral blood was directly labeled with multiple antibodies, each conjugated with a different fluorophore, pneumatically pumped through a microfluidic channel, and interrogated by a line-confocal microscope.

View Article and Find Full Text PDF

Recent single-cell and single-molecule studies have shown that a variety of subpopulations exist within biological systems, such as synaptic vesicles, that have previously been overlooked in common bulk studies. By isolating and enriching these various subpopulations, detailed analysis with a variety of analytical techniques can be done to further understand the role that various subpopulations play in cellular dynamics and how alterations to these subpopulations affect the overall function of the biological system. Previous sorters lack the sensitivity, sorting speed, and efficiency to isolate synaptic vesicles and other nanoscale systems.

View Article and Find Full Text PDF

This paper describes an approach called ensemble decision aliquot ranking (eDAR) for isolating rare cells from peripheral blood. eDAR has a recovery of over 93% with a zero false positive rate , and provides direct easy access to individual isolated live cells for downstream single-cell manipulation and analysis. We anticipate eDAR will enable new studies of various types of rare cells that circulate in blood.

View Article and Find Full Text PDF

This protocol describes a method for determining both the average number and variance of proteins, in the few to tens of copies, in isolated cellular compartments such as organelles and protein complexes. Other currently available protein quantification techniques either provide an average number, but lack information on the variance, or they are not suitable for reliably counting proteins present in the few to tens of copies. This protocol entails labeling of the cellular compartment with fluorescent primary-secondary antibody complexes, total internal reflection fluorescence microscopic imaging of the cellular compartment, digital image analysis and deconvolution of the fluorescence intensity data.

View Article and Find Full Text PDF
Article Synopsis
  • Protein sorting is crucial in neurotransmission, affecting the makeup of synaptic vesicles that release neurotransmitters.
  • This study used a single molecule quantification technique to analyze the variability in the number of seven membrane proteins in synaptic vesicles.
  • Results showed that some proteins were consistently sorted with high precision, while others displayed significant variability, suggesting that changes in protein expression could impact vesicle function.
View Article and Find Full Text PDF

Semiconducting polymer dots (Pdots) represent a new class of ultrabright fluorescent probes for biological imaging. They exhibit several important characteristics for experimentally demanding in vitro and in vivo fluorescence studies, such as their high brightness, fast emission rate, excellent photostability, nonblinking, and nontoxic feature. However, controlling the surface chemistry and bioconjugation of Pdots has been a challenging problem that prevented their widespread applications in biological studies.

View Article and Find Full Text PDF

Biological cells are highly sensitive to variation in local pressure because cellular membranes are not rigid. Unlike microbeads, cells deform under pressure or even lyse. In isolating or enriching cells by mechanical filtration, pressure-induced lysis is exacerbated when high local fluidic velocity is present or when a filter reaches its intended capacity.

View Article and Find Full Text PDF

As microfluidic systems transition from research tools to disposable clinical-diagnostic devices, new substrate materials are needed to meet both the regulatory requirement as well as the economics of disposable devices. This paper introduces a UV-curable polyurethane-methacrylate (PUMA) substrate that has been qualified for medical use and meets all of the challenges of manufacturing microfluidic devices. PUMA is optically transparent, biocompatible, and exhibits high electroosmotic mobility without surface modification.

View Article and Find Full Text PDF

Preparation of calibration standards for cell enumeration is critical in characterizing the performance of any method or apparatus intended for recovering rare cells. Diluting a cell suspension serially is prone to statistical sampling errors as the cell suspension becomes more dilute, whereas transferring and injecting cells individually into a diluent with a micromanipulator is time-consuming. We developed a simple and robust method using a surface-modified glass capillary to siphon and eject cells.

View Article and Find Full Text PDF

Thermoset polyester (TPE) microfluidic devices were previously developed as an alternative to poly(dimethylsiloxane) (PDMS) devices, fabricated similarly by replica molding, yet offering stable surface properties and good chemical compatibility with some organics that are incompatible with PDMS. This paper describes a number of improvements in the fabrication of TPE chips. Specifically, we describe methods to form TPE devices with a thin bottom layer for use with high numerical aperture (NA) objectives for sensitive fluorescence detection and optical manipulation.

View Article and Find Full Text PDF

This paper describes the use of two-beam line-confocal detection geometry for measuring the total mobility of individual molecules undergoing continuous-flow CE separation. High-sensitivity single-molecule confocal detection is usually performed with a diffraction limited focal spot (approximately 500 nm in diameter), which necessitates the use of nanometer-sized channels to ensure all molecules flow through the detection volume. To allow for the use of larger channels that are a few micrometers in width, we employed cylindrical optics to define a rectangular illumination area that is diffraction-limited (approximately 500 nm) in width, but a few micrometers in length to match the width of the microchannel.

View Article and Find Full Text PDF

This paper describes a new method for carrying out flow cytometry, which employs optical gradient forces to guide and focus particles in the fluid flow. An elliptically shaped Gaussian beam was focused at the center of a microchannel to exert radiation pressure on suspended nanoparticles that are passing through the channel, such that these particles are guided to the center of the channel for efficient detection and sorting. To verify the efficiency of this optical-gradient-flow-focusing method, we present numerical simulations of the trajectories of the nanoparticles in both electroosmotic flow (EOF) and pressure-driven flow (PDF).

View Article and Find Full Text PDF

The ability to accurately size low concentrations of nanoscale particles in small volumes is useful for a broad range of disciplines. Here, we characterize confocal correlation spectroscopy (CCS), which is capable of measuring the sizes of both fluorescent and nonfluorescent particles, such as quantum dots, gold colloids, latex spheres, and fluorescent beads. We accurately measured particles ranging in diameter from 11 to 300 nm, a size range that had been difficult to probe, owing to a phenomenon coined biased diffusion that causes diffusion times, or particle size, to deviate as a function of laser power.

View Article and Find Full Text PDF

We have observed whispering gallery modes in the inelastic emission from a 9.8 microm polystyrene bead coated with a monolayer of AlexaFluor 488 dye. Using a separate near-IR trapping laser and an Ar+ excitation laser enables us to isolate and study a single dye-coated bead in a colloidal suspension without causing any bead damage.

View Article and Find Full Text PDF

We have observed long-range trapping with a single-beam gradient force optical trap. 6 to 10 microm polystyrene beads that are initially approximately 100 microm away from the trap-center can be pulled into the trap-center. Particle-tracking enables us to determine the trajectory of a bead as it moves towards the trap-center and map out a capture zone inside which trapping can occur.

View Article and Find Full Text PDF