Conventional aerobic secondary treatment of domestic wastewater is energy intensive. Here we report net energy positive operation of a pilot-scale anaerobic secondary treatment system in a temperate climate, with low levels of volatile solids for disposal (< 0.15 mgVSS/mgCOD) and hydraulic residence times as low as 5.
View Article and Find Full Text PDFTwo significantly different pilot-scale AnMBRs were used to treat screened domestic wastewater for over one year. Both systems similarly reduced BOD and COD by 86-90% within a 13-32 °C temperature range and at comparable COD loading rates of 1.3-1.
View Article and Find Full Text PDFEnviron Sci Technol
April 2018
Many different aerobic and anaerobic biological processes and treatment schemes are available for transforming organics and/or removing nitrogen from domestic wastewaters. Significant reductions in oxygen requirements and absence of a need for organics for nitrogen reduction are often indicated as advantageous for using the newer anammox organism approach for nitrogen removal rather than the traditional nitrification/denitrification method, the most common one in use today. However, treatment schemes differ, and there are some in which such suggested advantages may not hold.
View Article and Find Full Text PDFAn aluminum dioxide (AlO) ceramic membrane was used in a single-stage anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for low-strength wastewater treatment. The AFCMBR was operated continuously for 395days at 25°C using a synthetic wastewater having a chemical oxygen demand (COD) averaging 260mg/L. A membrane net flux as high as 14.
View Article and Find Full Text PDFA bench-scale short-term test, developed to predict the long-term integrity of membranes with potential for use in anaerobic fluidized-bed membrane bioreactors, was used to evaluate several commercial hollow-fiber membranes. It was found that membrane performance varied widely, some membranes failing much more rapidly than others. Also found was that larger sizes of the fluidized media, in this case granular activated carbon (GAC), severely affected membrane structural integrity more than did smaller sizes, as did the method used for membrane attachment.
View Article and Find Full Text PDFThe effects on sulfur removal and membrane fouling resulting from FeCl(3) addition to an anaerobic fluidized membrane bioreactor (AFMBR) in a staged AFMBR (SAF-MBR) was investigated. Total sulfur removal in the SAF-MBR was 42-59% without FeCl(3) addition, but increased to 87-95% with FeCl(3) addition. Sulfide removal in the AFMBR increased to 90% with addition of FeCl(3) at a molar Fe(3+)/S ratio of 0.
View Article and Find Full Text PDFGlobal expectations for wastewater service infrastructure have evolved over time, and the standard treatment methods used by wastewater treatment plants (WWTPs) are facing issues related to problem shifting due to the current emphasis on sustainability. A transition in WWTPs toward reuse of wastewater-derived resources is recognized as a promising solution for overcoming these obstacles. However, it remains uncertain whether this approach can reduce the environmental footprint of WWTPs.
View Article and Find Full Text PDFA pilot-scale staged anaerobic fluidized membrane bioreactor (SAF-MBR) was operated continuously for 485 days, without chemical cleaning of membranes, treating primary-settled domestic wastewater with wastewater temperature between 8 and 30°C and total hydraulic retention time (HRT) between 4.6 and 6.8h.
View Article and Find Full Text PDFPerformance of a single anaerobic fluidized membrane bioreactor (AFMBR) was compared with that of a staged anaerobic fluidized membrane bioreactor system (SAF-MBR) that consisted of an anaerobic fluidized bed bioreactor (AFBR) followed by an AFMBR. Both systems were fed with an equal COD mixture (200mg/L) of acetate and propionate at 25°C. COD removals of 93-96% were obtained by both systems, independent of the hydraulic retention times (HRT) of 2-4h.
View Article and Find Full Text PDFAutotrophic nitrogen removal, coupling nitritation (ammonium to nitrite) with anaerobic ammonium oxidation (anammox), offers a promising nitrogen-removal alternative, especially for post-treatment of anaerobically-treated wastewater. However, previous reports suggest that less than 90% total nitrogen removal should be expected with this process alone because over 10% of the ammonium removed will be converted to nitrate. This is caused because nitrite conversion to nitrate is required for reduction of carbon dioxide to cell carbon.
View Article and Find Full Text PDFAutotrophic nitrogen removal via ammonia oxidizing (AOB) and anaerobic ammonium oxidizing (anammox) bacteria was evaluated for treatment of a dilute 50mg/L ammonia-containing solution in a single-stage nitrogen-removal filter at 25°C. Important was an external oxygenation system that permitted close control and measurement of oxygen supply, a difficulty with the generally used diffused air systems. Hydraulic retention time (HRT) was reduced in steps from 15 to 1h.
View Article and Find Full Text PDFA laboratory-scale staged anaerobic fluidized membrane bioreactor (SAF-MBR) system was used to treat a municipal wastewater primary-clarifier effluent. It was operated continuously for 192 days at 6-11 L/m(2)/h flux and trans-membrane pressure generally of 0.1 bar or less with no fouling control except the scouring effect of the fluidized granular activated carbon on membrane surfaces.
View Article and Find Full Text PDFA general concern that anaerobic treatment of dilute wastewaters is limited by the inability of methanogenic and related syntrophic organisms to reduce substrate concentrations adequately was evaluated using a 35 °C granular activated carbon-containing laboratory-scale fluidized bed reactor fed an acetate-propionate equal chemical oxygen demand (COD) mixture synthetic wastewater. Contrary to general expectations, effluent acetate and propionate concentrations remained near or below their detection limits of 0.4 mg COD/L with influent COD of 200mg/L, 17 min hydraulic retention time, and organic loading as high as 17 kg COD/m(3)d, or with influent COD values ranging from 45 to 2010 mg COD/L and organic loadings of 4.
View Article and Find Full Text PDFThe effect of influent DO/COD (dissolved oxygen/chemical oxygen demand) ratio on the performance of an anaerobic fluidized bed reactor (AFBR) containing GAC was studied. A high influent DO concentration was found to have adverse impacts on organic removal efficiency, methane production, and effluent suspended solids (SS) concentration. These problems resulted with a DO/COD ratio of 0.
View Article and Find Full Text PDFEnviron Sci Technol
September 2011
In seeking greater sustainability in water resources management, wastewater is now being considered more as a resource than as a waste-a resource for water, for plant nutrients, and for energy. Energy, the primary focus of this article, can be obtained from wastewater's organic as well as from its thermal content. Also, using wastewater's nitrogen and P nutrients for plant fertilization, rather than wasting them, helps offset the high energy cost of producing synthetic fertilizers.
View Article and Find Full Text PDFEnviron Sci Technol
August 2011
Monod kinetics indicates a substrate concentration limit (S(min)) at biological growth equilibrium where growth is just balanced by decay. A relationship between S(min) and the Gibbs free energy available at growth equilibrium (ΔG(E)) was introduced into the Monod model and applied directly to chemostat cultures. Results from four anaerobic mixed-culture chemostat studies yielded ΔG(E) of -17.
View Article and Find Full Text PDFEnviron Sci Technol
January 2011
Anaerobic membrane bioreactors have potential for energy-efficient treatment of domestic and other wastewaters, membrane fouling being a major hurdle to application. It was found that fouling can be controlled if membranes are placed directly in contact with the granular activated carbon (GAC) in an anaerobic fluidized bed bioreactor (AFMBR) used here for post-treatment of effluent from another anaerobic reactor treating dilute wastewater. A 120-d continuous-feed evaluation was conducted using this two-stage anaerobic treatment system operated at 35 °C and fed a synthetic wastewater with chemical oxygen demand (COD) averaging 513 mg/L.
View Article and Find Full Text PDFEnhanced reductive dehalogenation is an attractive treatment technology for in situ remediation of chlorinated solvent DNAPL source areas. Reductive dehalogenation is an acid-forming process with hydrochloric acid and also organic acids from fermentation of the electron donors typically building up in the source zone during remediation. This can lead to groundwater acidification thereby inhibiting the activity of dehalogenating microorganisms.
View Article and Find Full Text PDFA field study was performed to evaluate the potential for in-situ aerobic cometabolism of 1,1,1-trichloroethane (1,1,1-TCA) through bioaugmentation with a butane enrichment culture containing predominantly two Rhodococcus sp. strains named 179BP and 183BP that could cometabolize 1,1,1-TCA and 1,1-dicholoroethene (1,1-DCE). Batch tests indicated that 1,1-DCE was more rapidly transformed than 1,1,1-TCA by both strains with 183BP being the most effective organism.
View Article and Find Full Text PDFBioremediation by reductive dehalogenation of groundwater contaminated with tetrachloroethene (PCE) or trichloroethene (TCE) is generally carried out through the addition of a fermentable electron donor such as lactate, benzoate, carbohydrates or vegetable oil. These fermentable donors are converted by fermenting organisms into acetate and hydrogen, either of which might be used by dehalogenating microorganisms. Comparisons were made between H2 and acetate on the rate and extent of reductive dehalogenation of PCE.
View Article and Find Full Text PDFModifications are made to an earlier thermodynamic model (TEEM1) for prediction of maximum microbial yields from aerobic and anaerobic as well as heterotrophic and autotrophic growth. The revised model (TEEM2) corrects for lower yields found with aerobic oxidations of organic compounds where an oxygenase is involved and with growth on single-carbon (C1) compounds. TEEM1 and TEEM2 are based on energy release and consumption as determined from the reduction potential or Gibbs free energy of (1/2)-reaction reduction equations together with losses of energy during energy transfer.
View Article and Find Full Text PDFTwo technologies in combination, cometabolic bioremediation and in-well vapor stripping, were applied to reduce trichloroethylene (TCE) concentrations in groundwater at a contaminant source area without the need to pump contaminated groundwater to the surface for treatment. The vapor-stripping well reduced source TCE concentrations (as high as 6-9 mg/L) by over 95%. Effluent from the well then flowed to two bioremediation wells, where additional reductions of approximately 60% were achieved.
View Article and Find Full Text PDFSeveral major diseases of old age, including atherosclerosis, macular degeneration and neurodegenerative diseases are associated with the intracellular accumulation of substances that impair cellular function and viability. Moreover, the accumulation of lipofuscin, a substance that may have similarly deleterious effects, is one of the most universal markers of aging in postmitotic cells. Reversing this accumulation may thus be valuable, but has proven challenging, doubtless because substances resistant to cellular catabolism are inherently hard to degrade.
View Article and Find Full Text PDFEnviron Sci Technol
February 2005
Biological fluidized-bed reactor (BFBR) treatment with 1.3 mm granular activated carbon as support medium is being used for removal of 2.6 mg/L perchlorate from contaminated groundwater in California.
View Article and Find Full Text PDFReductive dehalogenation of tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2-dichloroethene (DCE), and vinyl chloride (VC) was examined in four cultures containing Dehalococcoides-like microorganisms. Dechlorination and growth kinetics were compared using a Monod growth-rate model for multiple electron acceptor usage with competition. Included were the Victoria mixed culture containing Dehalococcoides species strain VS (from Victoria, TX), the mixed culture KB-1/VC (from southern Ontario), the Pinellas mixed culture (from Pinellas, FL), and D.
View Article and Find Full Text PDF