In multiple myeloma (MM), increased osteoclast differentiation leads to the formation of osteolytic lesions in most MM patients. Bisphosphonates, such as zoledronic acid (ZA), are used to ameliorate bone resorption, but due to risk of serious side effects as well as the lack of repair of existing lesions, novel anti-bone resorption agents are required. Previously, the absence of osteolytic lesions in MM was strongly associated with elevated levels of cystatin M/E (CST6), a cysteine protease inhibitor, secreted by MM cells.
View Article and Find Full Text PDFPhenolic acids, such as hippuric acid (HA) and 3-(3-hydroxyphenyl) propionic acid (3-3-PPA), can be produced from microbiome digestion of polyphenols. Previously it was found that HA and 3-3-PPA facilitate bone formation and suppress bone resorption. However, the mechanism of action by which HA and 3-3-PPA protect bone from degeneration is currently unknown.
View Article and Find Full Text PDFOsteoclasts derived from hematopoietic stem cells control bone resorption. Identifying novel molecules that can epigenetically regulate osteoclastogenesis is important for developing novel treatments for osteoporosis and other disorders associated with bone deterioration and promoting healthy bone formation. The polycomb group (PcG) protein enhancer of zeste homolog 2 (Ezh2), a histone lysine methyltransferase, is associated with epigenetic regulation of numerous cellular processes, but its involvement in bone cell development and homeostasis is not yet clear.
View Article and Find Full Text PDFStudies from both humans and animal models indicated that maternal chronic poor-quality diet, especially a high fat diet (HFD), is significantly associated with reduced bone density and childhood fractures in offspring. When previously studied in a rat model, our data suggested that maternal HFD changes epigenetic marks such as DNA methylation and histone modifications to control osteoblast metabolism. In mouse embryonic and postnatal offspring bone samples, a ChIP-sequencing (ChIP-Seq)-based genome-wide method was used to locate the repressive histone mark H3K27me3 (mediated via the polycomb histone methyltransferase, ) and expressive histone mark H3K27ac ( mediated) throughout the genome.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.