The application of manures leads to the contamination of agricultural soils with veterinary antibiotics (VAs). These might exert toxicity on the soil microbiota and threaten environmental quality, and public health. We obtained mechanistic insights about the impact of three VAs, namely, sulfamethoxazole (SMX), tiamulin (TIA) and tilmicosin (TLM), on the abundance of key soil microbial groups, antibiotic resistance genes (ARGs) and class I integron integrases (intl1).
View Article and Find Full Text PDFThiabendazole (TBZ), is a persistent fungicide/anthelminthic and a serious environmental threat. We previously enriched a TBZ-degrading bacterial consortium and provided first evidence for a Sphingomonas involvement in TBZ transformation. Here, using a multi-omic approach combined with DNA-stable isotope probing (SIP) we verified the key degrading role of Sphingomonas and identify potential microbial interactions governing consortium functioning.
View Article and Find Full Text PDFVeterinary antibiotics (VAs) are not completely metabolized in the animal body. Hence, when animal excretes are used as soil manures, VA residues are dispersed with potential implications for environmental quality and human health. We studied the persistence of tiamulin (TIA) and tilmicosin (TLM) along their route from pig administration to fecal excretion and to agricultural soils.
View Article and Find Full Text PDFAnthelmintics are used to control infestations of ruminants by gastrointestinal nematodes. The limited metabolism of anthelmintics in animals result in their excretion in feces. These could be piled up in the floor of livestock farms, constituting a point source of environmental contamination, or used as manures in agricultural soils where they persist or move to water bodies.
View Article and Find Full Text PDFBiobeds, designed to minimize pesticide point source contamination, rely mainly on biodegradation processes. We studied the interactions of a biobed microbial community with the herbicide isoproturon (IPU) to explore the role of the gene, encoding the large subunit of an -demethylase responsible for the initial demethylation of IPU, via quantitative PCR (qPCR) and reverse transcription-PCR (RT-qPCR) and the effect of IPU on the diversity of the total bacterial community and its active fraction through amplicon sequencing of DNA and RNA, respectively. We further investigated the localization and dispersal mechanisms of in the biobed packing material by measuring the abundance of the plasmid pSH (harboring ) of the IPU-degrading sp.
View Article and Find Full Text PDFAuxotrophy to amino acids and vitamins is a common feature in the bacterial world shaping microbial communities through cross-feeding relations. The amino acid auxotrophy of pollutant-degrading bacteria could hamper their bioremediation potential, however, the underlying mechanisms of auxotrophy remain unexplored. We employed genome sequence-based metabolic reconstruction to identify potential mechanisms driving the amino acid auxotrophy of a strain degrading the fungicide -phenylphenol (OPP) and provided further verification for the identified mechanisms bacterial assays.
View Article and Find Full Text PDFFoshtiazate is an organophosphorus nematicide commonly used in protected crops and potato plantations. It is toxic to mammals, birds and honeybees, it is persistent in certain soils and can be transported to water resources. Recent studies by our group demonstrated, for the first time, the development of enhanced biodegradation of fosthiazate in agricultural soils.
View Article and Find Full Text PDFPesticides are intentionally applied to agricultural fields for crop protection. They can harm non-target organisms such as soil microorganisms involved in important ecosystem functions with impacts at the global scale. Within the frame of the pesticide registration process, the ecotoxicological impact of pesticides on soil microorganisms is still based on carbon and nitrogen mineralization tests, despite the availability of more extensive approaches analyzing the abundance, activity or diversity of soil microorganisms.
View Article and Find Full Text PDFDiphenylamine (DPA) is a common soil and water contaminant. A strain, recently isolated from a wastewater disposal site, was efficient in degrading DPA. Thorough knowledge of the metabolic capacity, genetic stability and physiology of bacteria during biodegradation of pollutants is essential for their future industrial exploitation.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFThe application of the fungicide thiabendazole (TBZ) in fruit packaging plants (FPP) results in the production of effluents which are often disposed in adjacent field sites. These require remediation to prevent further environmental dispersal of TBZ. We assessed the bioaugmentation potential of a newly isolated TBZ-degrading bacterial consortium in a naturally contaminated soil (NCS) exhibiting a natural gradient of TBZ levels (12000, 400, 250 and 12 mg kg).
View Article and Find Full Text PDFThiabendazole (TBZ) is a persistent fungicide used in the post-harvest treatment of fruits. Its application results in the production of contaminated effluents which should be treated before their environmental discharge. In the absence of efficient treatment methods in place, biological systems based on microbial inocula with specialized degrading capacities against TBZ could be a feasible treatment approach.
View Article and Find Full Text PDFOrtho-phenylphenol (OPP) is a fungicide contained in agro-industrial effluents produced by fruit-packaging plants. Within the frame of developing bio-strategies to detoxify these effluents, an OPP-degrading Sphingomonas haloaromaticamans strain was isolated. Proteins/genes with a putative catabolic role and bacterium adaptation mechanisms during OPP degradation were identified via genomic and proteomic analysis.
View Article and Find Full Text PDFThiabendazole (TBZ) is a fungicide used in fruit-packaging plants. Its application leads to the production of wastewaters requiring detoxification. In the absence of efficient treatment methods, biological depuration of these effluents could be a viable alternative.
View Article and Find Full Text PDFBiobeds are on-farm biodepuration systems whose efficiency rely on their high pesticide biodegradation capacity. We evaluated two optimization strategies, bioaugmentation and/or rhizosphere-assisted biodegradation, to maximize the dissipation capacity of biobeds. Iprodione was used as a model pesticide.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2017
Microbial degradation constitutes the key soil dissipation process for iprodione. We recently isolated a consortium, composed of an Arthrobacter sp. strain C1 and an Achromobacter sp.
View Article and Find Full Text PDFWastewaters from fruit-packaging plants contain high loads of toxic and persistent pesticides and should be treated on site. We evaluated the depuration performance of five pilot biobeds against those effluents. In addition we tested bioaugmentation with bacterial inocula as a strategy for optimization of their depuration capacity.
View Article and Find Full Text PDFThe antioxidant diphenylamine (DPA) is used in fruit-packaging plants for the control of the physiological disorder apple scald. Its use results in the production of DPA-contaminated wastewater which should be treated before finally discharged. Biological treatment systems using tailored-made microbial inocula with specific catabolic activities comprise an appealing and sustainable solution.
View Article and Find Full Text PDFBackground: Ortho-phenylphenol (OPP) is a fungicide used in fruit packaging plants for the control of fungal infestations during storage. Its application leads to the production of large wastewater volumes which according to the European legislation should be treated on site. In spite of this, no efficient treatment systems are currently available, and the development of biological systems based on tailored-made pesticide-degrading inocula for the treatment of these wastewaters is an appealing solution.
View Article and Find Full Text PDFMicrobes inhabiting the phyllosphere of crops are exposed to pesticides applied either directly onto plant foliage or indirectly through soil. Although, phyllosphere microbiology has been rapidly evolving, little is still known regarding the impact of pesticides on the epiphytic microbial community and especially on fungi. We determined the impact of two systemic pesticides (metalaxyl and imidacloprid), applied either on foliage or through soil, on the epiphytic fungal and bacterial communities via DGGE and cloning.
View Article and Find Full Text PDFWastewaters from the fruit packaging industry contain a high pesticide load and require treatment before their environmental discharge. We provide first evidence for the potential bioremediation of these wastewaters. Three white rot fungi (WRF) (Phanerochaete chrysosporium, Trametes versicolor, Pleurotus ostreatus) and an Aspergillus niger strain were tested in straw extract medium (StEM) and soil extract medium (SEM) for degrading the pesticides thiabendazole (TBZ), imazalil (IMZ), thiophanate methyl (TM), ortho-phenylphenol (OPP), diphenylamine (DPA) and chlorpyrifos (CHL).
View Article and Find Full Text PDF