We report on the use of atomic force microscopy (AFM) to identify and characterize an intermediate state in macrocycle shuttling in a hydrogen bonded amide-based molecular shuttle. The [2]rotaxane consists of a benzylic amide macrocycle mechanically locked onto a thread that bears both fumaramide and succinic amide-ester sites, each of which can bind to the macrocycle through up to four intercomponent hydrogen bonds. Using AFM-based single-molecule force spectroscopy, we mechanically triggered the translocation of the ring between the two principal binding sites ("stations") on the axle.
View Article and Find Full Text PDFSome biomolecules are able to generate directional forces by rectifying random thermal motions. This allows these molecular machines to perform mechanical tasks such as intracellular cargo transport or muscle contraction in plants and animals. Although some artificial molecular machines have been synthesized and used collectively to perform mechanical tasks, so far there have been no direct measurements of mechanical processes at the single-molecule level.
View Article and Find Full Text PDF