Despite maximally safe resection of the magnetic resonance imaging (MRI)-defined contrast-enhanced (CE) central tumor area and chemoradiotherapy, most patients with glioblastoma (GBM) relapse within a year in peritumoral FLAIR regions. Magnetic resonance spectroscopy imaging (MRSI) can discriminate metabolic tumor areas with higher recurrence potential as CNI+ regions (choline/-acetyl-aspartate index >2) can predict relapse sites. As relapses are mainly imputed to glioblastoma stem-like cells (GSCs), CNI+ areas might be GSC enriched.
View Article and Find Full Text PDFDespite post-operative radio-chemotherapy, glioblastoma systematically locally recurs. Tumors contacting the periventricular zone (PVZ) show earlier and more distant relapses than tumors not contacting the PVZ. Since glioblastoma stem-like cells (GSCs) have been proposed to play a major role in glioblastoma recurrence, we decided to test whether GSC migration properties could be different according to their anatomical location (PVZ+/PVZ-).
View Article and Find Full Text PDFGlioblastomas (GB) are malignant brain tumors with poor prognosis despite treatment with surgery and radio/chemotherapy. These tumors are defined by an important cellular heterogeneity and notably contain a subpopulation of GB-initiating cells (GIC), which contribute to tumor aggressiveness, resistance, and recurrence. Some integrins are specifically expressed by GICs and could be actionable targets to improve GB treatment.
View Article and Find Full Text PDFPluripotent stem cells (PSCs) are highly proliferative cells characterized by robust metabolic demands to power rapid division. For many years considered a passive component or "passenger" of cell-fate determination, cell metabolism is now starting to take center stage as a driver of cell fate outcomes. This review provides an update and analysis of our current understanding of PSC metabolism and its role in self-renewal, differentiation, and somatic cell reprogramming to pluripotency.
View Article and Find Full Text PDFEmerging and seminal studies have shown that cell metabolism influences gene expression by modifying the epigenome, which can regulate stem cell pluripotency, differentiation, and somatic cell reprogramming. Core pluripotency factors and developmental regulators reciprocally control the expression of key metabolism genes and their encoded pathways. Recent technological advances enabling sensitive detection methods during early mammalian development revealed the state-specific and context-dependent coordination of signal transduction, histone modifications, and gene expression in developing, resting, and malnourished embryos.
View Article and Find Full Text PDFGlioblastomas are malignant brain tumors with dismal prognosis despite standard treatment with surgery and radio/chemotherapy. These tumors are defined by an important cellular heterogeneity and notably contain a particular subpopulation of Glioblastoma-initiating cells, which recapitulate the heterogeneity of the original Glioblastoma. In order to classify these heterogeneous tumors, genomic profiling has also been undertaken to classify these heterogeneous tumors into several subtypes.
View Article and Find Full Text PDFHigh-grade gliomas, glioblastomas (GB), are refractory to conventional treatment combining surgery, chemotherapy, mainly temozolomide, and radiotherapy. This highlights an urgent need to develop novel therapies and increase the efficacy of radio/chemotherapy for these very aggressive and malignant brain tumors. Recently, tumor metabolism became an interesting potential therapeutic target in various cancers.
View Article and Find Full Text PDF