Publications by authors named "Perou C"

Background: Recent studies have shown that some pseudogenes are transcribed and contribute to cancer when dysregulated. In particular, pseudogene transcripts can function as competing endogenous RNAs (ceRNAs). The high similarity of gene and pseudogene nucleotide sequence has hindered experimental investigation of these mechanisms using RNA-seq.

View Article and Find Full Text PDF

Claudin-low tumors are a highly aggressive breast cancer subtype with no targeted treatments and a clinically documented resistance to chemotherapy. They are significantly enriched in cancer stem cells (CSCs), which makes claudin-low tumor models particularly attractive for studying CSC behavior and developing novel approaches to minimize CSC therapy resistance. One proposed mechanism by which CSCs arise is via an epithelial-mesenchymal transition (EMT), and reversal of this process may provide a potential therapeutic approach for increasing tumor chemosensitivity.

View Article and Find Full Text PDF

Unlabelled: Intratumoral heterogeneity correlates with clinical outcome and reflects the cellular complexity and dynamics within a tumor. Such heterogeneity is thought to contribute to radio- and chemoresistance because many treatments may target only certain tumor cell subpopulations. A better understanding of the functional interactions between various subpopulations of cells, therefore, may help in the development of effective cancer treatments.

View Article and Find Full Text PDF

The clinically and commercially successful taxanes, paclitaxel and docetaxel suffer from two major drawbacks, namely their very low aqueous solubility and the risk of developing resistance. Here, we present a method that overcomes both drawbacks in a very simple manner. We formulated 3rd generation taxoids, able to avoid common drug resistance mechanisms with doubly amphiphilic poly(2-oxazoline)s (POx), a safe and highly efficient polymer for the formulation of extremely hydrophobic drugs.

View Article and Find Full Text PDF

Mammary gland morphology and physiology are supported by an underlying cellular differentiation hierarchy. Molecular features associated with particular cell types along this hierarchy may contribute to the biological and clinical heterogeneity observed in human breast carcinomas. Investigating the normal cellular developmental phenotypes in breast tumors may provide new prognostic paradigms, identify new targetable pathways, and explain breast cancer subtype etiology.

View Article and Find Full Text PDF

Background: Controversy exists regarding the impact of CYP2D6 genotype on tamoxifen responsiveness. We examined loss of heterozygosity (LOH) at the CYP2D6 locus and determined its impact on genotyping error when tumor tissue is used as a DNA source.

Methods: Genomic tumor data from the adjuvant and metastatic settings (The Cancer Genome Atlas [TCGA] and Foundation Medicine [FM]) were analyzed to characterize the impact of CYP2D6 copy number alterations (CNAs) and LOH on Hardy Weinberg equilibrium (HWE).

View Article and Find Full Text PDF

Background: We and others have recently shown that tumor characteristics are altered throughout tumor progression. These findings emphasize the need for re-examination of tumor characteristics at relapse and have led to recommendations from ESMO and the Swedish Breast Cancer group. Here, we aim to determine whether tumor characteristics and molecular subtypes in breast cancer metastases confer clinically relevant prognostic information for patients.

View Article and Find Full Text PDF

Background: Retrospective analyses of NSABP B20 and SWOG 8814 showed a large benefit of chemotherapy in patients with ER-positive tumors and high OncotypeDX Recurrence Score (RS≥31). However, it might be possible that both studies may be contaminated by non-luminal tumors, especially in high-risk RS group.

Methods: We conducted simulations in order to obtain a better understanding of how the NSABP B20 and SWOG 8814 results would have been if non-luminal breast cancer would have been excluded.

View Article and Find Full Text PDF

Patient-derived human-in-mouse xenograft models of breast cancer (PDX models) that exhibit spontaneous lung metastases offer a potentially powerful model of cancer metastasis. In this study, we evaluated the malignant character of lung micrometastases that emerge in such models after orthotopic implantation of human breast tumor cells into the mouse mammary fat pad. Interestingly, relative to the parental primary breast tumors, the lung metastasis (met)-derived mammary tumors exhibited a slower growth rate and a reduced metastatic potential with a more differentiated epithelial status.

View Article and Find Full Text PDF

Human epidermal growth factor receptor 2 (HER2)-positive breast cancers are currently treated with trastuzumab, an anti-HER2 antibody. About 30% of these tumors express a group of HER2 fragments collectively known as p95HER2. Our previous work indicated that p95HER2-positive tumors are resistant to trastuzumab monotherapy.

View Article and Find Full Text PDF

BRCA1 mutation carriers are predisposed to developing basal-like breast cancers with high metastasis and poor prognosis. Yet, how BRCA1 suppresses formation of basal-like breast cancers is still obscure. Deletion of p18(Ink4c) (p18), an inhibitor of CDK4 and CDK6, functionally inactivates the RB pathway, stimulates mammary luminal stem cell (LSC) proliferation, and leads to spontaneous luminal tumor development.

View Article and Find Full Text PDF

Purpose: Tumor cells are surrounded by a complex microenvironment. The purpose of our study was to evaluate the role of heterogeneity of the tumor microenvironment in the variability of nanoparticle (NP) delivery and efficacy.

Experimental Designs: C3(1)-T-Antigen genetically engineered mouse model (C3-TAg) and T11/TP53(Null) orthotopic syngeneic murine transplant model (T11) representing human breast tumor subtypes basal-like and claudin-low, respectively, were evaluated.

View Article and Find Full Text PDF

Elucidating the molecular drivers of human breast cancers requires a strategy that is capable of integrating multiple forms of data and an ability to interpret the functional consequences of a given genetic aberration. Here we present an integrated genomic strategy based on the use of gene expression signatures of oncogenic pathway activity (n = 52) as a framework to analyze DNA copy number alterations in combination with data from a genome-wide RNA-mediated interference screen. We identify specific DNA amplifications and essential genes within these amplicons representing key genetic drivers, including known and new regulators of oncogenesis.

View Article and Find Full Text PDF

Purpose: Breast cancer (BC) is a disease of aging and the number of older BC patients in the U.S. is rising.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the diversity within HER2-positive breast cancer and its effects on survival outcomes, revealing essential molecular features of different subtypes.
  • It used extensive data from two large cancer databases to analyze gene expression and molecular characteristics, focusing on the differences in intrinsic subtypes.
  • The findings suggest that HER2 positivity does not significantly alter gene expression or improve survival rates when HER2-targeted therapy is not administered, highlighting the complexity of HER2+ breast cancer.
View Article and Find Full Text PDF

Breast cancer is a heterogeneous disease, divisible into a variable number of clinical subtypes. A fundamental question is how many etiological classes underlie the clinical spectrum of breast cancer? An etiological subtype reflects a grouping with a common set of causes, whereas a clinical subtype represents a grouping with similar prognosis and/or prediction. Herein, we review the evidence for breast cancer etiological heterogeneity.

View Article and Find Full Text PDF

Recent genomic analyses of pathologically defined tumor types identify "within-a-tissue" disease subtypes. However, the extent to which genomic signatures are shared across tissues is still unclear. We performed an integrative analysis using five genome-wide platforms and one proteomic platform on 3,527 specimens from 12 cancer types, revealing a unified classification into 11 major subtypes.

View Article and Find Full Text PDF

Background: In this study, we evaluated the ability of gene expression profiles to predict chemotherapy response and survival in triple-negative breast cancer (TNBC).

Methods: Gene expression and clinical-pathological data were evaluated in five independent cohorts, including three randomised clinical trials for a total of 1055 patients with TNBC, basal-like disease (BLBC) or both. Previously defined intrinsic molecular subtype and a proliferation signature were determined and tested.

View Article and Find Full Text PDF

Purpose: One third of patients with triple-negative breast cancer (TNBC) achieve pathologic complete response (pCR) with standard neoadjuvant chemotherapy (NACT). CALGB 40603 (Alliance), a 2 × 2 factorial, open-label, randomized phase II trial, evaluated the impact of adding carboplatin and/or bevacizumab.

Patients And Methods: Patients (N = 443) with stage II to III TNBC received paclitaxel 80 mg/m(2) once per week (wP) for 12 weeks, followed by doxorubicin plus cyclophosphamide once every 2 weeks (ddAC) for four cycles, and were randomly assigned to concurrent carboplatin (area under curve 6) once every 3 weeks for four cycles and/or bevacizumab 10 mg/kg once every 2 weeks for nine cycles.

View Article and Find Full Text PDF

BRCA1-mutated breast cancer is associated with basal-like disease; however, it is currently unclear if the presence of a BRCA1 mutation depicts a different entity within this subgroup. In this study, we compared the molecular features among basal-like tumors with and without BRCA1 mutations. Fourteen patients with BRCA1-mutated (nine germline and five somatic) tumors and basal-like disease, and 79 patients with BRCA1 non-mutated tumors and basal-like disease, were identified from the cancer genome atlas dataset.

View Article and Find Full Text PDF

High-throughput sequencing technologies, including RNA-seq, have made it possible to move beyond gene expression analysis to study transcriptional events including alternative splicing and gene fusions. Furthermore, recent studies in cancer have suggested the importance of identifying transcriptionally altered loci as biomarkers for improved prognosis and therapy. While many statistical methods have been proposed for identifying novel transcriptional events with RNA-seq, nearly all rely on contrasting known classes of samples, such as tumor and normal.

View Article and Find Full Text PDF

Nearly half of patients with advanced triple negative breast cancer (TNBC) develop brain metastases (BM) and most will also have uncontrolled extracranial disease. This study evaluated the safety and efficacy of iniparib, a small molecule anti-cancer agent that alters reactive oxygen species tumor metabolism and penetrates the blood brain barrier, with the topoisomerase I inhibitor irinotecan in patients with TNBC-BM. Eligible patients had TNBC with new or progressive BM and received irinotecan and iniparib every 3 weeks.

View Article and Find Full Text PDF

Identifying somatic mutations is critical for cancer genome characterization and for prioritizing patient treatment. DNA whole exome sequencing (DNA-WES) is currently the most popular technology; however, this yields low sensitivity in low purity tumors. RNA sequencing (RNA-seq) covers the expressed exome with depth proportional to expression.

View Article and Find Full Text PDF

Perturbations in stem cell activity and differentiation can lead to developmental defects and cancer. We use an approach involving a quantitative model of cell-state transitions in vitro to gain insights into how SLUG/SNAI2, a key developmental transcription factor, modulates mammary epithelial stem cell activity and differentiation in vivo. In the absence of SLUG, stem cells fail to transition into basal progenitor cells, while existing basal progenitor cells undergo luminal differentiation; together, these changes result in abnormal mammary architecture and defects in tissue function.

View Article and Find Full Text PDF