Recently, we introduced an optimized and automated Multi-Attribute Method (MAM) workflow, which (a) significantly reduces the number of missed cleavages using an automated two-step digestion procedure and (b) dramatically reduces chromatographic peak tailing and carryover of hydrophobic peptides by implementing less retentive reversed-phase column chemistries. Here, further insights are provided on the impact of postdigest acidification and the importance of maintaining hydrophobic peptides in solution using strong chaotropic agents after digestion. We demonstrate how oxidation can significantly increase the solubility of hydrophobic peptides, a fact that can have a profound impact on quantitation of oxidation levels if care is not taken in MAM workflows.
View Article and Find Full Text PDFPeptide mapping by liquid chromatography mass spectrometry (LC-MS) and the related multi-attribute method (MAM) are well-established analytical tools for verification of the primary structure and mapping/quantitation of co- and post-translational modifications (PTMs) or product quality attributes in biopharmaceutical development. Proteolytic digestion is a key step in peptide mapping workflows, which traditionally is labor-intensive, involving multiple manual steps. Recently, simple high-temperature workflows with automatic digestion were introduced, which facilitate robustness and reproducibility across laboratories.
View Article and Find Full Text PDFIntact mass analysis of proteins is simple, fast, and specific, and it effectively provides structural insight into the proteoforms or variants of the analyzed protein. For instance, the multiple glycoforms of recombinant monoclonal antibodies can be effectively analyzed by intact mass spectrometry (MS). A recent development in the Orbitrap technology has made this platform particularly well suited for analysis of large intact biomolecules, and here we describe procedures for performing intact mass analysis of intact glycoproteins using the Orbitrap platform, with the aim of identifying and quantitating the glycoforms.
View Article and Find Full Text PDFHydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) has become an important method to study the structural dynamics of proteins. However, glycoproteins represent a challenge to the traditional HDX-MS workflow for determining the deuterium uptake of the protein segments that contain the glycan. We have recently demonstrated the utility of the glycosidase PNGase A to enable HDX-MS analysis of N-glycosylated protein regions.
View Article and Find Full Text PDFWe have characterized the structure and dynamics of the carbohydrate-modifying enzyme Paenibacillus nanensis xanthan lyase (PXL) involved in the degradation of xanthan by X-ray crystallography, small-angle X-ray scattering, and hydrogen/deuterium exchange mass spectrometry. Unlike other xanthan lyases, PXL is specific for both unmodified mannose and pyruvylated mannose, which we find is correlated with structural differences in the substrate binding groove. The structure of the full-length enzyme reveals two additional C-terminal modules, one of which belongs to a new non-catalytic carbohydrate binding module family.
View Article and Find Full Text PDFHydrogen/deuterium exchange mass spectrometry (HDX-MS) is now a routinely used technique to inform on protein structure, dynamics, and interactions. Localizing the incorporated deuterium content on a single residue basis increases the spatial resolution of this technique enabling detailed structural analysis. Here, we investigate the use of ultraviolet photodissociation (UVPD) at 213 nm to measure deuterium levels at single residue resolution in HDX-MS experiments.
View Article and Find Full Text PDFProtein glycosylation is the most frequent post-translational modification and is present on more than 50% of eukaryotic proteins. Glycosylation covers a wide subset of modifications involving many types of complex oligosaccharide structures, making structural analysis of glycoproteins and their glycans challenging for most analytical techniques. Hydrogen/deuterium exchange monitored by mass spectrometry is a sensitive technique for investigation of protein conformational dynamics of complex heterogeneous proteins in solution.
View Article and Find Full Text PDFThe success of recombinant monoclonal immunoglobulins (IgG) is rooted in their ability to target distinct antigens with high affinity combined with an extraordinarily long serum half-life, typically around 3 weeks. The pharmacokinetics of IgGs is intimately linked to the recycling mechanism of the neonatal Fc receptor (FcRn). For long serum half-life of therapeutic IgGs, the highly pH-dependent interaction with FcRn needs to be balanced to allow efficient FcRn binding and release at slightly acidic pH and physiological pH, respectively.
View Article and Find Full Text PDFCrystallographic evidence suggests that the pH-dependent affinity of IgG molecules for the neonatal Fc receptor (FcRn) receptor primarily arises from salt bridges involving IgG histidine residues, resulting in moderate affinity at mildly acidic conditions. However, this view does not explain the diversity in affinity found in IgG variants, such as the YTE mutant (M252Y,S254T,T256E), which increases affinity to FcRn by up to 10×. Here we compare hydrogen exchange measurements at pH 7.
View Article and Find Full Text PDFThe recycling of immunoglobulins by the neonatal Fc receptor (FcRn) is of crucial importance in the maintenance of antibody levels in plasma and is responsible for the long half-lives of endogenous and recombinant monoclonal antibodies. From a therapeutic point of view there is great interest in understanding and modulating the IgG-FcRn interaction to optimize antibody pharmacokinetics and ultimately improve efficacy and safety. Here we studied the interaction between a full-length human IgG(1) and human FcRn via hydrogen/deuterium exchange mass spectrometry and targeted electron transfer dissociation to map sites perturbed by binding on both partners of the IgG-FcRn complex.
View Article and Find Full Text PDFCharacterization of conformational and dynamic changes associated with protein interactions can be done by hydrogen/deuterium exchange mass spectrometry (HDX-MS) by comparing the deuterium uptake in the bound and unbound state of the proteins. Investigation of local hydrogen/deuterium exchange in heteromultimeric protein complexes poses a challenge for the method due to the increased complexity of the mixture of peptides originating from all interaction partners in the complex. Previously, interference of peptides from one interaction partner has been removed by immobilizing the intact protein on beads prior to the HDX-MS experiment.
View Article and Find Full Text PDFPurpose: Sym004 is a novel therapeutic antibody mixture product comprising two unmarketed monoclonal antibodies (mAb) targeting the epidermal growth factor receptor (EGFR). In previous preclinical proof-of-concept studies, Sym004 was shown to elicit superior cancer cell growth inhibition activities compared with marketed anti-EGFR mAbs. This article describes the design and results of the preclinical safety program conducted to support early clinical development of Sym004.
View Article and Find Full Text PDF