Publications by authors named "Perner F"

Understanding the molecular pathogenesis of MLL fusion oncoprotein (MLL-FP) leukaemia has spawned epigenetic therapies that have improved clinical outcomes in this often-incurable disease. Using genetic and pharmacological approaches, we define the individual and combined contribution of KAT6A, KAT6B and KAT7, in MLL-FP leukaemia. Whilst inhibition of KAT6A/B is efficacious in some pre-clinical models, simultaneous targeting of KAT7, with the novel inhibitor PF-9363, increases the therapeutic efficacy.

View Article and Find Full Text PDF

Control of stem cell-associated genes by Trithorax group (TrxG) and Polycomb group (PcG) proteins is frequently misregulated in cancer. In leukemia, oncogenic fusion proteins hijack the TrxG homolog KMT2A and disrupt PcG activity to maintain pro-leukemogenic gene expression, though the mechanisms by which oncofusion proteins antagonize PcG proteins remain unclear. Here, we define the relationship between NUP98 oncofusion proteins and the non-canonical polycomb repressive complex 1.

View Article and Find Full Text PDF

The interaction between menin and histone-lysine N-methyltransferase 2A (KMT2A) is a critical dependency for KMT2A- or nucleophosmin 1 (NPM1)-altered leukemias and an emerging opportunity for therapeutic development. JNJ-75276617 (bleximenib) is a novel, orally bioavailable, potent, and selective protein-protein interaction inhibitor of the binding between menin and KMT2A. In KMT2A-rearranged (KMT2A-r) and NPM1-mutant (NPM1c) acute myeloid leukemia (AML) cells, JNJ-75276617 inhibited the association of the menin-KMT2A complex with chromatin at target gene promoters, resulting in reduced expression of several menin-KMT2A target genes, including MEIS1 and FLT3.

View Article and Find Full Text PDF
Article Synopsis
  • Small molecules known as menin inhibitors, which target the menin-KMT2A protein interactions, are showing promise in clinical trials for certain types of acute myeloid leukemia (AML), but combination therapy is needed to enhance treatment and reduce resistance.
  • * Researchers have identified IKZF1/IKAROS as a significant target in KMT2A-rearranged AML and introduced a new IKAROS degrader called mezigdomide, which shows improved effectiveness compared to older treatments like lenalidomide and iberdomide.
  • * In preclinical studies, mezigdomide not only works well on its own but also significantly boosts the effectiveness of menin inhibitors, suggesting it could be a strong candidate for early phase
View Article and Find Full Text PDF

Pharmacologic targeting of chromatin-associated protein complexes has shown significant responses in KMT2A-rearranged (KMT2A-r) acute myeloid leukemia (AML) but resistance frequently develops to single agents. This points to a need for therapeutic combinations that target multiple mechanisms. To enhance our understanding of functional dependencies in KMT2A-r AML, we have used a proteomic approach to identify the catalytic immunoproteasome subunit PSMB8 as a specific vulnerability.

View Article and Find Full Text PDF
Article Synopsis
  • Targeting critical epigenetic regulators, like the interaction between menin and KMT2A, can reverse abnormal gene transcription in cancer and help restore normal tissue function, particularly in acute leukaemia cases linked to these changes.
  • A phase 1 clinical trial of revumenib, an oral inhibitor targeting the menin-KMT2A interaction, showed promise in treating patients with relapsed or refractory acute leukaemia, achieving a 30% rate of complete or partial remission with minimal severe side effects.
  • The study reported that revumenib led to the clearance of residual leukaemia and indicated signs of patients' blood cells differentiating towards normal function, supporting menin
View Article and Find Full Text PDF

Chromatin-binding proteins are critical regulators of cell state in haematopoiesis. Acute leukaemias driven by rearrangement of the mixed lineage leukaemia 1 gene (KMT2Ar) or mutation of the nucleophosmin gene (NPM1) require the chromatin adapter protein menin, encoded by the MEN1 gene, to sustain aberrant leukaemogenic gene expression programs. In a phase 1 first-in-human clinical trial, the menin inhibitor revumenib, which is designed to disrupt the menin-MLL1 interaction, induced clinical responses in patients with leukaemia with KMT2Ar or mutated NPM1 (ref.

View Article and Find Full Text PDF

Unlabelled: The dysregulation of developmental and stem cell-associated genes is a common phenomenon during cancer development. Around half of patients with acute myeloid leukemia (AML) express high levels of HOXA cluster genes and MEIS1. Most of these AML cases harbor an NPM1 mutation (NPM1c), which encodes for an oncoprotein mislocalized from the nucleolus to the cytoplasm.

View Article and Find Full Text PDF
Article Synopsis
  • Menin interacts with oncogenic MLL1-fusion proteins, and small molecules targeting this interaction are being tested in clinical trials to treat leukemia.
  • Research has uncovered a molecular switch between MLL1-Menin and MLL3/4-UTX complexes that influences how leukemia cells respond to Menin-MLL inhibitors.
  • Activating tumor-suppressive genes through CDK4/6 inhibitors can overcome treatment resistance in leukemia cells resistant to Menin inhibitors, highlighting new therapeutic strategies.
View Article and Find Full Text PDF

Mutations of the JAK2 gene are frequent aberrations in the aging hematopoietic system and in myeloid neoplasms. While JAK-inhibitors efficiently reduce hyperinflammation induced by the constitutively active mutated JAK2 kinase, the malignant clone and abundance of mutated cells remains rather unaffected. Here, we sought to assess for genetic vulnerabilities of JAK2-mutated clones.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) remains difficult to treat and requires new therapeutic approaches. Potent inhibitors of the chromatin-associated protein MENIN have recently entered human clinical trials, opening new therapeutic opportunities for some genetic subtypes of this disease. Using genome-scale functional genetic screens, we identified IKAROS (encoded by IKZF1) as an essential transcription factor in KMT2A (MLL1)-rearranged (MLL-r) AML that maintains leukemogenic gene expression while also repressing pathways for tumor suppression, immune regulation and cellular differentiation.

View Article and Find Full Text PDF

MLL rearrangements produce fusion oncoproteins that drive leukemia development, but the direct effects of MLL-fusion inactivation remain poorly defined. We designed models with degradable MLL::AF9 where treatment with small molecules induces rapid degradation. We leveraged the kinetics of this system to identify a core subset of MLL::AF9 target genes where MLL::AF9 degradation induces changes in transcriptional elongation within 15 minutes.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers conducted a detailed analysis to find new drugs for treating acute myeloid leukemia (AML) caused by fusion genes, specifically focusing on AML1-ETO (AE) driven AML.
  • They discovered that the fusion protein AE disrupts phospholipase C (PLC) signaling, with PLCgamma 1 (PLCG1) being a vital target that affects the leukemia's self-renewal and growth.
  • Inactivating PLCG1 in both mouse and human models led to reduced leukemia maintenance, while not affecting normal blood cell functions, suggesting that targeting the PLCG1 pathway could be a promising therapeutic strategy for AML1-ETO+ leukemia.
View Article and Find Full Text PDF

Translocations involving the NUP98 gene produce NUP98-fusion proteins and are associated with a poor prognosis in acute myeloid leukemia (AML). MLL1 is a molecular dependency in NUP98-fusion leukemia, and therefore we investigated the efficacy of therapeutic blockade of the menin-MLL1 interaction in NUP98-fusion leukemia models. Using mouse leukemia cell lines driven by NUP98-HOXA9 and NUP98-JARID1A fusion oncoproteins, we demonstrate that NUP98-fusion-driven leukemia is sensitive to the menin-MLL1 inhibitor VTP50469, with an IC50 similar to what we have previously reported for MLL-rearranged and NPM1c leukemia cells.

View Article and Find Full Text PDF

Persistence of malignant clones is a major determinant of adverse outcome in patients with hematologic malignancies. Despite the fact that the majority of patients with acute myeloid leukemia (AML) achieve complete remission after chemotherapy, a large proportion of them relapse as a result of residual malignant cells. These persistent clones have a competitive advantage and can re-establish disease.

View Article and Find Full Text PDF

Valencia-Sánchez et al. have demonstrated that two histone post-translational modifications (PTMs) - H4K16 acetylation (H4K16ac) and H2BK120 ubiquitination (H2Bub) - enhance the methylation of H3K79 (H3K79me) by Dot1. This breakthrough indicates crosstalk between H4Kac/H2Bub/H3K79me and may improve our understanding of the role that Dot1/Dot1L plays in developmental processes and disease, including MLL1/KMT2A(MLL-r) leukemia.

View Article and Find Full Text PDF

While Janus-kinase (JAK)-inhibitors effectively reduce the inflammatory phenotype of myeloproliferative neoplasms (MPN), they do not affect disease burden or presence of the mutated clone to a major extent. Here, we show how Janus-kinase 2 (-mutated cells persist through maintenance of the mitogen-activated protein kinase Interacting Serine/Threonine Kinase 1 (MKNK1) - Extracellular Signal-regulated Kinase (ERK)-axis by hijacking the splicing machinery through post-translational modifications.

View Article and Find Full Text PDF

The aberrant function of chromatin regulatory networks (epigenetics) is a hallmark of cancer promoting oncogenic gene expression. A growing body of evidence suggests that the disruption of specific chromatin-associated protein complexes has therapeutic potential in malignant conditions, particularly those that are driven by aberrant chromatin modifiers. Of note, a number of enzymatic inhibitors that block the catalytic function of histone modifying enzymes have been established and entered clinical trials.

View Article and Find Full Text PDF

Janus kinases (JAKs) mediate responses to cytokines, hormones and growth factors in haematopoietic cells. The JAK gene JAK2 is frequently mutated in the ageing haematopoietic system and in haematopoietic cancers. JAK2 mutations constitutively activate downstream signalling and are drivers of myeloproliferative neoplasm (MPN).

View Article and Find Full Text PDF
Article Synopsis
  • Adult-onset hemophagocytic lymphohistiocytosis (HLH) is a serious immune disorder that differs from pediatric cases, primarily not being linked to genetic factors.
  • Research suggests that clonal hematopoiesis (CH), a condition with mutated blood cells leading to inflammation, may play a role in adult HLH.
  • Studies in mice show that those with Tet2 mutations have a heightened inflammatory response, indicating that CH is prevalent in adult HLH patients and might worsen the disease.
View Article and Find Full Text PDF
Article Synopsis
  • Clonal hematopoiesis is common in elderly individuals, with a study of 50 people over 80 revealing 26% had leukemia-associated mutations, primarily in the DNMT3A gene.
  • Most mutations were low in frequency and stable over 3 years without leading to blood cancers.
  • A larger cohort of 160 across ages showed a 6.2% mutation rate in DNMT3A, with higher prevalence in older groups, indicating age-related genetic changes without significant clonal expansion on their own.
View Article and Find Full Text PDF

Some germline variants are predicted to disrupt protein function in HLH-associated genes. Such variants are neither enriched in adult-onset HLH nor associated with specific clinical or laboratory features of HLH.

View Article and Find Full Text PDF