This study aimed to estimate the impact of an abandoned copper (Cu) mine on ecosystem environmental quality, using integrated ecological and biogeochemical analyses. Through a controlled experiment, the amount of Cu released by waste rocks, Cu adsorbed in soils, Cu geochemical behaviour and its leached amount were measured. Furthermore, to investigate the impacts of mine drainage on the adjacent ecosystem, samples of sediments, water and aquatic macroinvertebrates were analysed.
View Article and Find Full Text PDFTechnosols created to reclaim degraded soils is a promising solution that needs further research. The objectives of the study were: i) to create a Technosol with a very high capacity to immobilize copper from mining, ii) to assess the capacity of the Technosol to immobilize copper after planting two tropical native tree species, and iii) to analyse the capacity of the native trees for extracting copper from polluted soils. Myracrodruon urundeuva (aroeira) and Cedrela fissilis (pink cedar) were planted in pots with Technosol spiked with copper at concentrations of 125, 1525 and 3050 mg Cu kg.
View Article and Find Full Text PDFInt J Phytoremediation
September 2019
Due to the limited number of studies on phytoremediation using native tree species in tropical soils, the aim was to identify new phytoremediator species from tropical climate with the purpose of promoting an increase in the diversity of tropical native trees used in phytoremediation projects. Seven native tree species from Brazil were selected: Cedrela fissilis, Handroanthus serratifolius, Copaifera langsdorffii, Hymenaea courbaril, Mimosa caesalpiniifolia, Cecropia sp. and Myracrodruon urundeuva.
View Article and Find Full Text PDFThis study aimed to evaluate mine water reuse, elucidating the potential problems related to trace metal biogeochemistry focusing on Cu dynamics in water, soil, and plants. Water samples were collected from a Cu mine and a reservoir used to store mine water. Additional samples were taken from soils from an uncultivated area and a banana orchard (irrigated with mine water for at least 10 years) and plant from the irrigated area.
View Article and Find Full Text PDFThe potentially hazardous effects of rock wastes disposed at open pit in three different areas (Pr: Ore processing; Wr: Waste rock and Bd: Border) of an abandoned copper mine were evaluated in this study, with emphasis on acid drainage generation, metal contamination and copper geochemical dynamics in soils. Samples of waste rock were analyzed by Energy dispersive X-ray fluorescence (XRF), scanning electron microscopy with microanalysis (SEM-EDS) and X-ray diffraction (XRD). Soil samples were analyzed to determine the total metal contents (XRF), mineralogy (XRD), pH (H2O and H2O2), organic and inorganic carbon, % of total N, S and P, particle size, and a sequential extraction procedure was used to identify the different copper fractions.
View Article and Find Full Text PDF