Plant-derived (poly)phenolic compounds have been undoubtedly shown to promote endocrine homeostasis through the improvement of diverse metabolic outcomes. Amongst diverse potential mechanisms, the prebiotic modulatory effects exerted by these compounds on the gut microbiota have supported their nutraceutical application in both experimental and clinical approaches. However, the comprehension of the microbiota modulatory patterns observed upon (poly)phenol-based dietary interventions is still in its infancy, which makes the standardization of the metabolic outcomes in response to a given (poly)phenol a herculean task.
View Article and Find Full Text PDFThe gut microbiota has been extensively investigated during the last decade because of its effects on host neuroendocrine pathways and other processes. The imbalance between beneficial and pathogenic bacteria, known as dysbiosis, may be a determining predisposing factor for many noncommunicable chronic diseases, such as obesity, type 2 diabetes mellitus, metabolic syndrome, and Alzheimer's disease. On the other hand, interventions aiming to reestablish the balance between microbiota components have been suggested as potential preventive therapeutic strategies against these disorders.
View Article and Find Full Text PDF