Publications by authors named "Perihan Mir"

Article Synopsis
  • Safety is crucial in gene therapies for inherited preleukemia syndromes like severe congenital neutropenia (CN), and various CRISPR/Cas9 strategies were tested on CD34 cells from CN patients.
  • All gene editing methods, including universal knockout and allele-specific mutation correction, showed at least 30% editing success without toxicity and helped restore blood cell production.
  • Personalized assessments of off-target effects were conducted using patient-derived stem cells, revealing that allele-specific methods had the best safety profiles, highlighting the need for careful strategy selection in gene therapies for these diseases.
View Article and Find Full Text PDF

Severe congenital neutropenia (CN) is an inherited pre-leukemia bone marrow failure syndrome commonly caused by autosomal-dominant ELANE mutations (ELANE-CN). ELANE-CN patients are treated with daily injections of recombinant human granulocyte colony-stimulating factor (rhG-CSF). However, some patients do not respond to rhG-CSF, and approximately 15% of ELANE-CN patients develop myelodysplasia or acute myeloid leukemia.

View Article and Find Full Text PDF
Article Synopsis
  • Protein therapeutics often deal with issues like complex production, instability, poor solubility, and aggregation, which can hinder their effectiveness.
  • The study introduces a topological refactoring strategy to redesign granulopoietic proteins based on the structure of G-CSF, resulting in two high-activity proteins that are both stable and resistant to proteases.
  • These engineered proteins, while different in sequence and structure from native G-CSF, successfully induce the differentiation of human stem cells into neutrophils and demonstrate strong activity in live models, showcasing the versatility of the refactoring approach for various protein targets.
View Article and Find Full Text PDF

Severe congenital neutropenia (CN) is a pre-leukemic bone marrow failure syndrome that can evolve to acute myeloid leukemia (AML). Mutations in CSF3R and RUNX1 are frequently observed in CN patients, although how they drive the transition from CN to AML (CN/AML) is unclear. Here we establish a model of stepwise leukemogenesis in CN/AML using CRISPR-Cas9 gene editing of CN patient-derived iPSCs.

View Article and Find Full Text PDF

Background: Nicotinamide phosphoribosyltransferase (NAMPT) regulates cellular functions through the protein deacetylation activity of nicotinamide adenine dinucleotide (NAD)-dependent sirtuins (SIRTs). SIRTs regulate functions of histones and none-histone proteins. The role of NAMPT/SIRT pathway in the regulation of maintenance and differentiation of human-induced pluripotent stem (iPS) cells is not fully elucidated.

View Article and Find Full Text PDF

Computational protein design is rapidly becoming more powerful, and improving the accuracy of computational methods would greatly streamline protein engineering by eliminating the need for empirical optimization in the laboratory. In this work, we set out to design novel granulopoietic agents using a rescaffolding strategy with the goal of achieving simpler and more stable proteins. All of the 4 experimentally tested designs were folded, monomeric, and stable, while the 2 determined structures agreed with the design models within less than 2.

View Article and Find Full Text PDF

Cyclic neutropenia (CyN) is a hematologic disorder in which peripheral blood absolute neutrophil counts (ANCs) show cycles of approximately 21-day intervals. The majority of CyN patients harbor ELANE mutations, but the mechanism of ANC cycling is unclear. We performed analysis of bone marrow (BM) subpopulations in CyN patients at the peak and the nadir of the ANC cycle and detected high proportions of BM hematopoietic stem cells (HSCs) and hematopoietic stem and progenitor cells (HSPCs) at the nadir of the ANC cycle, as compared with the peak.

View Article and Find Full Text PDF

In this chapter, we present an optimized CRISPR/Cas9 RNP nucleofection approach for gene knockout (KO) in hematopoietic stem and progenitor cells (HSPCs). With experimentally proved active locus-specific sgRNAs, we routinely reach over 80% gene KO in HSPCs, thus avoiding the need for cell sorting or enrichment of targeted cell population. Additionally, we provide a protocol for in vitro granulocytic differentiation of HSPCs after gene KO and detailed description of granulocyte function tests which can be applied to study the effects of a particular gene KO.

View Article and Find Full Text PDF

A Autosomal-dominant mutations are the most common cause of severe congenital neutropenia. Although the majority of congenital neutropenia patients respond to daily granulocyte colony stimulating factor, approximately 15 % do not respond to this cytokine at doses up to 50 μg/kg/day and approximately 15 % of patients will develop myelodysplasia or acute myeloid leukemia. "Maturation arrest," the failure of the marrow myeloid progenitors to form mature neutrophils, is a consistent feature of associated congenital neutropenia.

View Article and Find Full Text PDF

CRISPR/Cas9-mediated gene editing of stem cells and primary cell types has several limitations for clinical applications. The direct delivery of ribonucleoprotein (RNP) complexes consisting of Cas9 nuclease and guide RNA (gRNA) has improved DNA- and virus-free gene modifications, but it does not enable the essential enrichment of the gene-edited cells. Here, we established a protocol for the fluorescent labeling and delivery of CRISPR/Cas9-gRNA RNP in primary human hematopoietic stem and progenitor cells (HSPCs) and induced pluripotent stem cells (iPSCs).

View Article and Find Full Text PDF

We describe the establishment of an embryoid-body-based protocol for hematopoietic/myeloid differentiation of human induced pluripotent stem cells that allows the generation of CD34 cells or mature myeloid cells in vitro. Using this model, we were able to recapitulate the defective granulocytic differentiation in patients with severe congenital neutropenia (CN), an inherited preleukemia bone marrow failure syndrome. Importantly, in vitro maturation arrest of granulopoiesis was associated with an elevated unfolded protein response (UPR) and enhanced expression of the cell cycle inhibitor p21.

View Article and Find Full Text PDF

Severe congenital neutropenia (CN) is a bone marrow failure syndrome characterized by an absolute neutrophil count (ANC) below 500 cells/μL and recurrent, life-threatening bacterial infections. Treatment with granulocyte colony-stimulating factor (G-CSF) increases the ANC in the majority of CN patients. In contrary, granulocyte-monocyte colony-stimulating factor (GM-CSF) fails to increase neutrophil numbers in CN patients in vitro and in vivo, suggesting specific defects in signaling pathways downstream of GM-CSF receptor.

View Article and Find Full Text PDF

The transcription factor SOX2 is a key regulator of pluripotency in embryonic stem cells and plays important roles in early organogenesis. Recently, SOX2 expression was documented in various cancers and suggested as a cancer stem cell (CSC) marker. Here we identify the Ser/Thr-kinase AKT as an upstream regulator of SOX2 protein turnover in breast carcinoma (BC).

View Article and Find Full Text PDF