Publications by authors named "Perigio B Francisco"

To investigate the functional properties of 10 α-glucan branching enzymes (BEs) from various sources, we determined the chain-length distribution of BE enzymatic products and their phosphorylase-limit dextrins (Φ-LD). All BEs could be classified into either of the three rice BE isozymes: OsBEI, OsBEIIa, or OsBEIIb. Escherichia coli BE (EcoBE) had the same enzymatic properties as OsBEI, while Synechococcus elongatus BE (ScoBE) and Chlorella kessleri BE (ChlBE) had BEIIb-type properties.

View Article and Find Full Text PDF

The Arabidopsis genome has two fumarase genes, one of which encodes a protein with mitochondrial targeting information (FUM1) while the other (FUM2) does not. We show that a FUM1-green fluorescent protein fusion is directed to mitochondria while FUM2-red fluorescent protein remains in the cytosol. While mitochondrial FUM1 is an essential gene, cytosolic FUM2 is not required for plant growth.

View Article and Find Full Text PDF

In monocots, starch branching enzyme II (BEII) was functionally differentiated into BEIIa and BEIIb after separation from the dicots, and in cereals BEIIb plays a distinct role in amylopectin biosynthesis in the endosperm. The present study was conducted to examine to what extent a green algal BEII has an overlapping function with BEIIb in starch biosynthesis by introducing the Chlorella BEII gene into an amylose-extender (ae) mutant of rice. Chlorella BEII was found to complement the contribution of the rice endosperm BEIIb to the structures of amylopectin and starch granules because these mutated phenotypes were recovered almost completely to those of the wild type by the expression of Chlorella BEII.

View Article and Find Full Text PDF

Red algae are widely known to produce floridean starch but it remains unclear whether the molecular structure of this algal polyglucan is distinct from that of the starch synthesized by vascular plants and green algae. The present study shows that the unicellular species Porphyridium purpureum R-1 (order Porphyridiales, class Bangiophyceae) produces both amylopectin-type and amylose-type alpha-polyglucans. In contrast, Cyanidium caldarium (order Porphyridiales, class Bangiophyceae) synthesizes glycogen-type polyglucan, but not amylose.

View Article and Find Full Text PDF

A comprehensive analysis of the transcript levels of genes which encode starch-synthesis enzymes is fundamental for the assessment of the function of each enzyme and the regulatory mechanism for starch biosynthesis in source and sink organs. Using quantitative real-time RT-PCR, an examination was made of the expression profiles of 27 rice genes encoding six classes of enzymes, i.e.

View Article and Find Full Text PDF

Four amino acids were variable between the 'active' indica-type and 'inactive' japonica-type soluble starch synthase IIa (SSIIa) of rice plants; Glu-88 and Gly-604 in SSIIa of indica-cultivars IR36 and Kasalath were replaced by Asp-88 and Ser-604, respectively, in both japonica cultivars Nipponbare and Kinmaze SSIIa, whereas Val-737 and Leu-781 in indica SSIIa were replaced by Met-737 in cv. Nipponbare and Phe-781 in cv. Kinmaze SSIIa, respectively.

View Article and Find Full Text PDF

Streptomyces coelicolor A3(2) strain M145 has eight chitinase genes scattered on the chromosome: six genes for family 18 (chiA, B, C, D, E and H) and two for family 19 (chiF and G). In this study, the expression and regulation of these genes were investigated. The transcription of five of the genes (chiA, B, C, D and F) was induced in the presence of colloidal chitin while that of the other three genes (chiE, G and H) was not.

View Article and Find Full Text PDF