Surface plasmon resonance (SPR) is a label-free, real-time bio-sensing technique with high potential in the diagnostic area, especially when a signal amplification strategy is used to improve the detection limit. We report here a simple method for enhancing the detection limit of bovine serum albumin (BSA), by attaching gold nanorods (AuNRs). AuNRs were obtained by a seedless synthesis technique and characterized using scanning electron microscopy (SEM), UV-VIS spectroscopy, FT-IR spectroscopy and dynamic light scattering (DLS).
View Article and Find Full Text PDFNanomaterials (Basel)
September 2021
In this work, we report the development of self-powered photodetectors that integrate silicon nanoholes (SiNHs) and four different types of metal nanowires (AgNWs, AuNWs, NiNWs, PtNWs) applied on the SiNHs' surface using the solution processing method. The effectiveness of the proposed architectures is evidenced through extensive experimental and simulation analysis. The AgNWs/SiNHs device showed the highest photo-to-dark current ratio of 2.
View Article and Find Full Text PDFWe report a simple, scalable route to wafer-size processing for fabrication of tunable nanoporous gold (NPG) by the anodization process at low constant current in a solution of hydrofluoric acid and dimethylformamide. Microstructural, optical, and electrochemical investigations were employed for a systematic analysis of the sample porosity evolution while increasing the anodization duration, namely the small angle X-ray scattering (SAXS) technique and electrochemical impedance spectroscopy (EIS). Whereas the SAXS analysis practically completes the scanning electronic microscopy (SEM) investigations and provides data about the impact of the etching time on the nanoporous gold layers in terms of fractal dimension and average pore surface area, the EIS analysis was used to estimate the electroactive area, the associated roughness factor, as well as the heterogeneous electron transfer rate constant.
View Article and Find Full Text PDFGold nanoparticles of comparable size were synthetized using honey mediated green method (AuNPs@honey) and citrate mediated Turkevich method (AuNPs@citrate). Their colloidal behavior in two cell media DMEM and RPMI, both supplemented with 10% FBS, was systematically investigated with different characterization techniques in order to evidence how the composition of the media influences their stability and the development of protein/NP complex. We revealed the formation of the protein corona which individually covers the nanoparticles in RPMI media, like a dielectric spacer according to UV-Vis spectroscopy, while DMEM promotes more abundant agglomerations, clustering together the nanoparticles, according to TEM investigations.
View Article and Find Full Text PDFThe challenge for conformal modification of the ultra-high internal surface of nanoporous silicon was tackled by electrochemical polymerisation of 2,6-dihydroxynaphthalene using cyclic voltammetry or potentiometry and, notably, after the thermal treatment (800 °C, N, 4 h) an assembly of interconnected networks of graphene strongly adhering to nanoporous silicon matrix resulted. Herein we demonstrate the achievement of an easy scalable technology for solid state supercapacitors on silicon, with excellent electrochemical properties. Accordingly, our symmetric supercapacitors (SSC) showed remarkable performance characteristics, comparable to many of the best high-power and/or high-energy carbon-based supercapacitors, their figures of merit matching under battery-like supercapacitor behaviour.
View Article and Find Full Text PDFNovel microarray platform for single nucleotide polymorphisms (SNPs) detection has been developed using silicon nanowires (SiNWs) as support and two different surface modification methods for attaining the necessary functional groups. Accordingly, we compared the detection specificity and stability over time of the probes printed on SiNWs modified with (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde (GAD), or coated with a simpler procedure using epoxy-based SU-8 photoresist. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were used for comparative characterization of the unmodified and coated SiNWs.
View Article and Find Full Text PDF