Publications by authors named "Perez-Garnes M"

Among the different types of nanoparticles used in biomedical applications, Fe nanoparticles and mesoporous siliceous materials have been extensively investigated because of their possible theranostic applications. Here, we present hollow-shell mesoporous silica nanoparticles that encapsulate iron oxide and that are prepared using a drug-structure-directing agent concept (DSDA), composed of the model drug tryptophan modified by carbon aliphatic hydrocarbon chains. The modified tryptophan can behave as an organic template that allows directing the hollow-shell mesoporous silica framework, as a result of its micellisation and subsequent assembly of the silica around it.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disease, the 2nd most common after Alzheimer's disease, the main effect of which is the loss of dopaminergic neurons. Levodopa or l-Dopa is an amino acid used in the treatment of PD that acts as the immediate precursor to dopamine. However, over time the efficacy of the medication gradually decreases requiring modified delivery methods.

View Article and Find Full Text PDF

Hollow mesoporous silica nanoparticles (HMSNs) consist of a network of cavities confined by mesoporous shells that have emerged as promising tools for drug delivery or diagnostic. The physicochemical properties of HMSNs are dictated by the synthesis conditions but which conditions affect which property and how it impacts on biological interactions is unclear. Here by changing the concentration of the structure-directing agent (SDA), the pH and the ratio between SDA and added salt (NaCl) we determine the effects in size, morphology, surface charge and density or degree of compaction (physicochemical properties) of HMSNs and define their impact on their biological interactions with human colon cancer or healthy cells at the level of cellular uptake and viability.

View Article and Find Full Text PDF

Scaffolds based on poly(ethyl acrylate) having interwoven channels were coated with a hyaluronan (HA) hydrogel to be used in tissue engineering applications. Controlled typologies of coatings evolving from isolated aggregates to continuous layers, which eventually clog the channels, were obtained by using hyaluronan solutions of different concentrations. The efficiency of the HA loading was determined using gravimetric and thermogravimetric methods, and the hydrogel loss during the subsequent crosslinking process was quantified, seeming to depend on the mass fraction of hyaluronan initially incorporated to the pores.

View Article and Find Full Text PDF

Semi-degradable materials may have many applications. Here poly(ethyl acrylate) and poly(ϵ-caprolactone) were combined as semi-interpenetrated networks, and thoroughly characterized in terms of final composition, interactions between components, wettability, and mechanical properties. PCL modulates the mechanical properties of the PEA elastomeric network.

View Article and Find Full Text PDF

A procedure to obtain electrospun mats of hyaluronic acid (HA) stable in aqueous media in one single step has been developed. It consists in combining an HA solution with a divinyl sulfone one as cross-linker in a three-way valve to immediately electroblow their mixture. Membranes obtained with this method, after sterilization and conditioning, are ready to use in cell culture without need of any additional post-treatment.

View Article and Find Full Text PDF

Olfactory ensheathing cells (OECs) are of great interest for regenerative purposes since they are believed to aid axonal growth. With the view set on the strategies to achieve reconnection between neuronal structures, it is of great importance to characterize the behaviour of these cells on long thread-like structures that may efficiently guide cell spread in a targeted way. Here, rat OECs were studied on polycaprolactone (PCL) long monofilaments, on long bars and on discs.

View Article and Find Full Text PDF

Purpose: It is known that surface nanotopography influences cell adhesion and differentiation. Our aim is to analyze the effect of nanoscale topography on fibronectin adsorption and, afterwards, on cell adhesion in order to rationalize the cell-material interaction by focusing on the state of the intermediate layer of adsorbed fibronectin at the material interphase.

Methods: Nanotopographic surfaces were produced by demixing of thin film polymer blends - PLLA and PS - during a high speed spin-casting process.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session6e94j7hkmabklaf72gaq3qo06jossclm): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once