Publications by authors named "Perez-Castineira J"

How does a plant detect the changing seasons and make important developmental decisions accordingly? How do they incorporate daylength information into their routine physiological processes? Photoperiodism, or the capacity to measure the daylength, is a crucial aspect of plant development that helps plants determine the best time of the year to make vital decisions, such as flowering. The protein CONSTANS (CO) constitutes the central regulator of this sensing mechanism, not only activating florigen production in the leaves but also participating in many physiological aspects in which seasonality is important. Recent discoveries place CO in the center of a gene network that can determine the length of the day and confer seasonal input to aspects of plant development and physiology as important as senescence, seed size, or circadian rhythms.

View Article and Find Full Text PDF

Overexpression of membrane-bound K-dependent H-translocating inorganic pyrophosphatases (H-PPases) from higher plants has been widely used to alleviate the sensitivity toward NaCl in these organisms, a strategy that had been previously tested in . On the other hand, H-PPases have been reported to functionally complement the yeast cytosolic soluble pyrophosphatase (IPP1). Here, the efficiency of the K-dependent Na-PPase from the archaeon (MVP) to functionally complement IPP1 has been compared to that of its H-pumping counterpart from (AVP1).

View Article and Find Full Text PDF

Inorganic pyrophosphate (PPi) is an abundant by-product of cellular metabolism. PPi-producing reactions take place in the nucleus concurrently with reactions that use PPi as a substrate. Saccharomyces cerevisiae possesses two soluble pyrophosphatases (sPPases): Ipp1p, an essential and allegedly cytosolic protein, and Ipp2p, a mitochondrial isoenzyme.

View Article and Find Full Text PDF

Amine fungicides are widely used as crop protectants. Their success is believed to be related to their ability to inhibit postlanosterol sterol biosynthesis in fungi, in particular sterol-Δ(8),Δ(7)-isomerases and sterol-Δ(14)-reductases, with a concomitant accumulation of toxic abnormal sterols. However, their actual cellular effects and mechanisms of death induction are still poorly understood.

View Article and Find Full Text PDF

8-Dehydrosterols are present in a wide range of biologically relevant situations, from human rare diseases to amine fungicide-treated fungi and crops. However, the molecular bases of their toxicity are still obscure. We show here that 8-dehydrosterols, but not other sterols, affect yeast vacuole acidification through V-ATPases.

View Article and Find Full Text PDF

Inorganic pyrophosphatases are required for anabolism to take place in all living organisms. Defects in genes encoding these hydrolytic enzymes are considered inviable, although their exact nature has not been studied at the cellular and molecular physiology levels. Using a conditional mutant in IPP1, the Saccharomyces cerevisiae gene encoding the cytosolic soluble pyrophosphatase, we show that respiring cells arrest in S phase upon Ipp1p deficiency, but they remain viable and resume growth if accumulated pyrophosphate is removed.

View Article and Find Full Text PDF

Cancer cells show a metabolic shift that makes them overproduce protons; this has the potential to disturb the cellular acid-base homeostasis. However, these cells show cytoplasmic alkalinisation, increased acid extrusion and endosome-dependent drug resistance. Vacuolar type ATPases (V-ATPases), together with other transporters, are responsible to a great extent for these symptoms.

View Article and Find Full Text PDF

V-ATPases (vacuolar H+-ATPases) are a specific class of multi-subunit pumps that play an essential role in the generation of proton gradients across eukaryotic endomembranes. Another simpler proton pump that co-localizes with the V-ATPase occurs in plants and many protists: the single-subunit H+-PPase [H+-translocating PPase (inorganic pyrophosphatase)]. Little is known about the relative contribution of these two proteins to the acidification of intracellular compartments.

View Article and Find Full Text PDF

Expression of heterologous multispanning membrane proteins in Saccharomyces cerevisiae is a difficult task. Quite often, the use of multicopy plasmids where the foreign gene is under the control of a strong promoter does not guarantee efficient production of the corresponding protein. In the present study, we show that the expression level and/or subcellular localization in S.

View Article and Find Full Text PDF

Vacuolar-type ATPases are multicomponent proton pumps involved in the acidification of single membrane intracellular compartments such as endosomes and lysosomes. They couple the hydrolysis of ATP to the translocation of one to two protons across the membrane. Acidification of the lumen of single membrane organelles is a necessary factor for the correct traffic of membranes and cargo to and from the different internal compartments of a cell.

View Article and Find Full Text PDF

Suggestions by Calvin about a role of inorganic pyrophosphate (PPi) in early photosynthesis and by Lipmann that PPi may have been the original energy-rich phosphate donor in biological energy conversion, were followed in the mid-1960s by experimental results with isolated chromatophore membranes from the purple photosynthetic bacterium Rhodospirillum rubrum. PPi was shown to be hydrolysed in an uncoupler stimulated reaction by a membrane-bound inorganic pyrophosphatase (PPase), to be formed at the expense of light energy in photophosphorylation and to be utilized as an energy donor for various energy-requiring reactions, as a first known alternative to ATP. This direct link between PPi and photosynthesis led to increasing attention concerning the role of PPi in both early and present biological energy transfer.

View Article and Find Full Text PDF

Although several proton-pumping pyrophosphatases (H+-PPases) have been overexpressed in heterologous systems, purification of these recombinant integral membrane proteins in large amounts in order to study their structure-function relationships has proven to be a very difficult task. In this study we report a new method for large-scale production of pure and stable thermophilic H+-PPase from Thermotoga maritima. Following overexpression in yeast, a "Hot-Solve" procedure based on high-temperature solubilization and metal-affinity chromatography was used to obtain a highly purified detergent-solubilized TVP fraction with a yield around 1.

View Article and Find Full Text PDF

Soluble and membrane-bound inorganic pyrophosphatases (sPPase and H(+)-PPase, respectively) of the purple nonsulfur bacterium Rhodospirillum rubrum are differentially regulated by environmental growth conditions. Both proteins and their transcripts were found in cells of anaerobic phototrophic batch cultures along all growth phases, although they displayed different time patterns. However, in aerobic cells that grow in the dark, which exhibited the highest growth rates, Northern and Western blot analyses as well as activity assays demonstrated high sPPase levels but no H(+)-PPase.

View Article and Find Full Text PDF

Comparative studies between the proton-pumping, membrane-bound inorganic pyrophosphatases (H(+)-PPases) from hyperthermophilic and thermophilic prokaryotes and those from mesophilic organisms can now be performed because of very recent sequence data. Typical overall factors that contribute to protein thermostability are found in H(+)-PPases from extremophiles; nevertheless, putative active site motifs of this class of enzymes may be identical over the whole range of average growth temperatures of the compared prokaryotes. Heterologous expression in yeast of H(+)-PPases from organisms spanning a wide range of thermal habitats has allowed the biochemical comparison among these proteins within the same system, ensuring that differences observed are due to intrinsic characteristics of the proteins and not to their interactions with different cellular environments.

View Article and Find Full Text PDF

Two types of proteins that hydrolyze inorganic pyrophosphate (PPi), very different in both amino acid sequence and structure, have been characterized to date: soluble and membrane-bound proton-pumping pyrophosphatases (sPPases and H(+)-PPases, respectively). sPPases are ubiquitous proteins that hydrolyze PPi releasing heat, whereas H+-PPases, so far unidentified in animal and fungal cells, couple the energy of PPi hydrolysis to proton movement across biological membranes. The budding yeast Saccharomyces cerevisiae has two sPPases that are located in the cytosol and in the mitochondria.

View Article and Find Full Text PDF

An increasing body of biochemical and genetic evidence suggests that inorganic pyrophosphate (PPi) plays an important role in protist bioenergetics. In these organisms, two types of inorganic pyrophosphatases [EC 3.6.

View Article and Find Full Text PDF

Current evidence suggests the occurrence of two classes of vacuolar-type H(+)-translocating inorganic pyrophosphatases (V-PPases): K(+)-insensitive proteins, identified in eukaryotes, bacteria and archaea, and K(+)-stimulated V-PPases, identified to date only in eukaryotes. Here, we describe the functional characterization of a thermostable V-PPase from the anaerobic hyperthermophilic bacterium Thermotoga maritima by heterologous expression in Saccharomyces cerevisiae. The activity of this 71-kDa membrane-embedded polypeptide has a near obligate requirement for K(+), like the plant V-PPase, and its thermostability depends on the binding of Mg(2+).

View Article and Find Full Text PDF

Total level of O-acetyl-L-serine(thiol)lyase (OASTL) activity observed in Monoraphidium braunii fed-repleted cells decreases up to 40% after 24 h the carbon source was removed from the culture; however, no significant change in the activity is observed in N-starved cells. On the other hand, sulfur starvation induces OASTL activity in M. braunii, which may increase 2.

View Article and Find Full Text PDF

Legume nodules have specialized transport functions for the exchange of carbon and nitrogen compounds between bacteroids and root cells. Plasma membrane-type (vanadate-sensitive) H+-ATPase energizes secondary active transporters in plant cells and it could drive exchanges across peribacteroidal and plasmatic membranes. A nodule cDNA corresponding to a major isoform of Phaseolus vulgaris H+-ATPase (designated BHA1) has been cloned.

View Article and Find Full Text PDF

The plasma membrane (PM) H(+)-ATPase has been proposed to play important transport and regulatory roles in plant physiology, including its participation in auxin-induced acidification in coleoptile segments. This enzyme is encoded by a family of genes differing in tissue distribution, regulation, and expression level. A major expressed isoform of the maize PM H(+)-ATPase (MHA2) has been characterized.

View Article and Find Full Text PDF

The kinetics of nucleoside-triphosphate-dependent proton translocation by a vacuolar-type adenosine-triphosphatase have been studied, using the enzyme from bovine chromaffin-granule membranes, purified and reconstituted into proteoliposomes. The reaction was followed by recording the quenching of the fluorescence of the permeant weak base 9-amino-6-chloro-2-methoxyacridine; fluorescence data were collected and stored in digital form, and the initial reaction rates estimated by linear regression. In the absence of nucleoside diphosphate, the dependence of initial rates of proton translocation on substrate concentration were fitted well by the Michaelis-Menten equation, as were the kinetics of ATP hydrolysis.

View Article and Find Full Text PDF