Publications by authors named "Perepelov A"

Article Synopsis
  • Capsular polysaccharide (CPS) from the bacterial pathogen Acinetobacter baumannii is a key factor in its virulence, specifically the KL58 variant produced by the strain MRSN 31468.
  • The CPS structure is characterized as a branched tetrasaccharide containing various sugar units, including glucose, galactose, N-acetyl-galactosamine, and a unique acid, indicating complex biosynthesis processes.
  • The study identified specific genes responsible for synthesizing components of CPS, noting that an acetyltransferase linked to a prophage may influence its structural modifications, while a related CPS variant contains a different epimer not present in MRSN 31468.
View Article and Find Full Text PDF
Article Synopsis
  • Unlabelled infections are a key global problem, with antibiotic resistance and capsular polysaccharide (CPS) playing significant roles in their virulence.
  • A study identified an antibiotic-resistant isolate (48_n) from asymptomatic patients, revealing a unique CPS biosynthesis locus (KL71) and its structure using advanced spectroscopy techniques.
  • Understanding diverse antibiotic resistance profiles, particularly from less common bacterial lineages, could offer insights into resistance spread and the development of new therapeutic interventions.
View Article and Find Full Text PDF

The structure of the K141 type capsular polysaccharide (CPS) produced by Acinetobacter baumannii KZ1106, a clinical isolate recovered from Kazakhstan in 2016, was established by sugar analyses and one- and two-dimensional H and C NMR spectroscopy. The CPS was shown to consist of branched tetrasaccharide repeating units (K-units) with the following structure: This structure was found to be consistent with the genetic content of the KL141 CPS biosynthesis gene cluster at the chromosomal K locus in the KZ1106 whole genome sequence. Assignment of the encoded enzymes allowed the first sugar of the K unit to be identified, which revealed that the β-d-GlcpNAc-(1→3)-d-GlcpNAc bond is the linkage between K-units formed by the Wzy polymerase.

View Article and Find Full Text PDF

The development of microbial biofilms increases the survival of microorganisms in the extreme conditions of ecosystems contaminated with components of liquid radioactive waste (LRW) and may contribute to the successful bioremediation of groundwater. The purpose of this work was to compare the composition of the microorganisms and the exopolysaccharide matrix of the biofilms formed on sandy loams collected at the aquifer from a clean zone and from a zone with nitrate and radionuclide contamination. The aquifer is polluted from the nearby surface repository for liquid radioactive waste (Russia).

View Article and Find Full Text PDF

Two novel virulent phages of the genus infecting , a significant nosocomial pathogen, have been isolated and studied. Phages Brutus and Scipio were able to infect strains belonging to the K116 and K82 capsular types, respectively. The biological properties and genomic organization of the phages were characterized.

View Article and Find Full Text PDF

K63 capsular polysaccharide produced by Acinetobacter baumannii isolate LUH5551 (previously designated isolate O24) was re-examined using sugar analysis, Smith degradation, and one- and two-dimensional H and C NMR spectroscopy. Though previously reported as O24 consisting of linear tetrasaccharide units that include a 7-acetamido-5-acylamino form of 8-epilegionaminic acid [8eLeg5R7Ac, acylated at C5 with (S)-3-hydroxybutanoyl or acetyl (1:1)], the elucidated structure of the K63 type capsule was found to include a derivative of 5,7-diamino-3,5,7,9-tetradeoxy-d-glycero-d-galacto-non-2-ulosonic (legionaminic) acid, Leg5Ac7R, where R is either (S)-3-hydroxybutanoyl or an acetyl group (∼1:1 ratio). This finding is consistent with the presence of the lgaABCHIFG gene module for Leg5Ac7R biosynthesis in the KL63 gene cluster at the capsular polysaccharide (CPS) biosynthesis K locus in the LUH5551 genome.

View Article and Find Full Text PDF

Bacteriophage show promise for the treatment of infections that resist all therapeutically suitable antibiotics. Many tail-spike depolymerases encoded by phage that are able to degrade capsular polysaccharide (CPS) exhibit specificity for the linkage present between K-units that make up CPS polymers. This linkage is formed by a specific Wzy polymerase, and the ability to predict this linkage using sequence-based methods that identify the Wzy at the K locus could assist with the selection of phage for therapy.

View Article and Find Full Text PDF

The aim of this work was to examine the structure and gene cluster of O-OPS of S. xiamenensis strain DCB-2-1 and survey its conceivability for chelating uranyl, chromate and vanadate ions from solution. O-polysaccharide (OPS, O-antigen) was isolated from the lipopolysaccharide of Shewanella xiamenensis DCB-2-1 and studied by 1D and 2D nuclear magnetic resonance (NMR) spectroscopy and sugar analysis.

View Article and Find Full Text PDF

Glycoproteins, in which polysaccharides are usually attached to proteins, are an important class of biomolecules that are widely used as therapeutic agents in clinical treatments for decades. Uropathogenic Escherichia coli (UPEC) O21 has been identified as a serogroup that induces urinary tract infections, with a global increasing number among women and young children. Therefore, there is an urgent need to establish protective vaccines against UPEC infection.

View Article and Find Full Text PDF

The structures of two cell wall glycopolymers were studied in the plant pathogenic bacterium Clavibacter tesselarius VKM Ac-1406 (family Microbacteriaceae, order Micrococcales, class Actinomycetes). The predominant polymer was a novel (1 → 6)-linked β-d-galactofuranan with a highly branched repeating unit, α-L-Rhap-(1 → 3)-α-D-Galp-(1 → 2)-[α-L-Rhap-(1 → 3)]-α-D-Fucp-(1 →, at O-2 on every second galactofuranose residue. The second polymer present in small amounts was acidic with the repeating unit, →3)-α-D-Galp-(1 → 3)-α-D-[4,6-S-Pyr]-Manp-(1 → 3)-α-D-Manp-[2OAc]-(1→, and was reported in all Clavibacter species investigated to date.

View Article and Find Full Text PDF

The polysaccharide capsule surrounding bacterial cell plays an important role in pathogenesis of infections caused by the opportunistic pathogen Acinetobacter baumannii by providing protection from external factors. The structures of the capsular polysaccharide (CPS) produced by A. baumannii isolates and the corresponding CPS biosynthesis gene clusters are highly diverse, although many of them are related.

View Article and Find Full Text PDF

A glycopolymer of novel structure was found in the cell wall of plant pathogen Clavibacter phaseoli VKM Ac-2641 (family Microbacteriaceae, class Actinomycetes). The glycopolymer was (1 → 6)-linked β-d-galactofuranan with side branched trisaccharide, α-D-Manp-(1 → 2)-[α-D-Manp-(1 → 3)]-α-D-Ribf-(1→ at O-2 on every second galactofuranose residue. The galactofuranan structure was established by chemical and NMR spectroscopic methods using one- and two-dimensional techniques H,H COSY, TOCSY, ROESY and H,C HSQC, HMBC.

View Article and Find Full Text PDF

Acinetobacter baumannii is an antibiotic-resistant opportunistic pathogen, one of the main causes of hospital infections. There is an urgent need for the development of therapy strategies which are not based on antibiotics. Hybridoma technology was used to obtain monoclonal antibodies.

View Article and Find Full Text PDF

A structurally diverse capsular polysaccharide (CPS) in the outer cell envelope plays an important role in the virulence of the important bacterial pathogen, Acinetobacter baumannii. More than 75 different CPS structures have been determined for the species to date, and many CPSs include isomers of a higher sugar, namely 5,7-diamino-3,5,7,9-tetradeoxynon-2-ulosonic acid. Recently, a novel isomer having the d-glycero-l-manno configuration (5,7-di-N-acetyl-8-epipseudaminic acid; 8ePse5Ac7Ac) has been identified in the CPS from A.

View Article and Find Full Text PDF

A halotolerant hydrocarbon-oxidizing bacterium Halomonas titanicae strain TAT1 was isolated from a petroleum reservoir. The O-polysaccharide (O-antigen) was isolated from the lipopolysaccharide of H. titanicae TAT1 and studied by component analyses and 1D and 2D NMR spectroscopy.

View Article and Find Full Text PDF

The clonal bacterial species Acinetobacter baumannii is an emerging multidrug-resistant pathogen which causes high-lethality infections. Cells of A. baumannii are surrounded by the type-specific capsular polysaccharide (CPS), which provides resistance to the protective mechanisms of the host and is considered a target for immunization.

View Article and Find Full Text PDF

The O-polysaccharide (OPS) was isolated by mild acid degradation of the lipopolysaccharide of Enterobacter cloacae G2559 and studied by sugar analysis along with 1D and 2D H and C NMR spectroscopy. The following structure of the branched pentasaccharide repeating unit was established. The O-antigen gene cluster of Enterobacter cloacae G2559 was sequenced.

View Article and Find Full Text PDF

A structurally diverse capsular polysaccharide that surrounds the bacterial cell plays an important role in virulence of Acinetobacter baumannii, a cause of nosocomial infections worldwide. Various isomers of 5,7-diacylamido-3,5,7,9-tetradeoxynon-2-ulosonic acid have been identified as components of bacterial polysaccharides. In this work, we report on the identification of a new isomer having the d-glycero-l-manno configuration (8-epipseudaminic acid) in the capsular polysaccharide of A.

View Article and Find Full Text PDF

Whole genome sequence from Acinetobacter baumannii isolate Ab-46-1632 reveals a novel KL144 capsular polysaccharide (CPS) biosynthesis gene cluster, which carries genes for d-glucuronic acid (D-GlcA) and l-rhamnose (l-Rha) synthesis. The CPS was extracted from Ab-46-1632 and studied by H and C NMR spectroscopy, including a two-dimensional H,C HMBC experiment and Smith degradation. The CPS was found to have a hexasaccharide repeat unit composed of four l-Rhap residues and one residue each of d-GlcpA and N-acetyl-d-glucosamine (D-GlcpNAc) consistent with sugar synthesis genes present in KL144.

View Article and Find Full Text PDF
Article Synopsis
  • The O-polysaccharide (OPS) was extracted from the lipopolysaccharide of Enterobacter cloacae G3422 using mild acid degradation.
  • Chemical methods, including sugar analysis, Smith degradation, and NMR spectroscopy, were used to determine the structure of the branched tetrasaccharide repeating unit.
  • The sequence of the O-antigen gene cluster was analyzed, and gene functions were inferred via database comparisons, aligning well with the identified O-antigen structure.
View Article and Find Full Text PDF

The O-antigen (O-polysaccharide) is an essential component of lipopolysaccharide on the surface of Gram-negative bacteria and plays an important role in interaction with host organisms. In this study, we investigated the chemical structure and characterized the gene cluster of Enterobacter cloacae K7 O-antigen. As judged by sugar analyses along with NMR spectroscopy data, E.

View Article and Find Full Text PDF
Article Synopsis
  • The O-polysaccharide (OPS) was extracted from the lipopolysaccharide of Pseudomonas veronii SHC-8-1 and characterized using various analytical techniques, including NMR spectroscopy.
  • The structure of the OPS was defined as containing QuipNAc4N(dHh), which includes specific modifications like acetylation and acylation.
  • The gene cluster responsible for the O-antigen was sequenced, and its functions were inferred by comparing with existing database sequences, confirming the relationship with the established OPS structure.
View Article and Find Full Text PDF

The O-polysaccharide (O-antigen) of Escherichia coli SDLZB008 was isolated from the lipopolysaccharide and studied by sugar analyses along with H and C NMR spectroscopy. The following structure of the branched pentasaccharide repeating unit was established, which is unique among the known structures of bacterial polysaccharides: The O-antigen gene cluster of E. coli SDLZB008 has been sequenced.

View Article and Find Full Text PDF

A denitrifying bacterium Pseudomonas veronii A-6-5 was isolated from a deep aquifer contaminated with nitrates and uranium. The O-polysaccharide (OPS) was isolated by mild acid degradation of the lipopolysaccharide of P. veronii A-6-5 and studied using sugar analysis and 1D and 2D H and C NMR spectroscopy.

View Article and Find Full Text PDF

The structure of the O-polysaccharide of an aerobic halophilic bacterium Salinicola salarius HO-14 isolated from a heavy oil reservoir with highly mineralized water was determined. The neutral O-polysaccharide of strain HO-14 was isolated from the lipopolysaccharide and studied by sugar analysis and NMR spectroscopy. The linear tetrasaccharide repeating unit was found to have the following structure: →2)-α-l-Rhap-(1 → 3)-β-l-Rhap-(1 → 2)-α-l-Rhap-(1 → 2)-α-d-Manp-(1→.

View Article and Find Full Text PDF