The future of reproductive biotechnologies in water buffalo in Southeast Asian countries holds significant promise for enhancing genetic quality and productivity. Fixed-time artificial insemination remains the commonly used technology, with advances in assisted reproductive technologies (ART) such as in vitro embryo production (IVEP), embryo transfer (ET), and the use of sex-sorted sperm increasingly adopted to improve breeding efficiency. These technologies overcome traditional breeding limitations, such as low reproductive rates, genetic diversity constraints, and the production of sex-predetermined offspring.
View Article and Find Full Text PDFBuffaloes are raised by small farm holders primarily as source of draft power owing to its resistance to hot climate, disease, and stress conditions. Over the years, transformation of these animals from draft to dairy was deliberately carried out through genetic improvement program leading to the development of buffalo-based enterprises. Buffalo production is now getting more attention and interest from buffalo raisers due to its socioeconomic impact as well as its contribution to propelling the livestock industry in many developing countries.
View Article and Find Full Text PDFThe objective of this study was to evaluate the effect of accessory corpus luteum (CL) induction on fertility in dairy cows. On day 5 after artificial insemination (AI), lactating Holstein cows were assigned unequally to receive gonadotrophin-releasing hormone treatment (GnRH) (n = 641) or no treatment (control; n = 289). Cows had their blood sampled for progesterone (P4), and ovaries were scanned by ultrasound on days 5, 12, 19, 26, 33, 47, and 61 after AI.
View Article and Find Full Text PDFViability of in vitro-derived vitrified-warmed preimplantation stage buffalo embryos were assessed in vitro and in vivo. Oocytes were collected from ovaries of slaughtered riverine buffaloes, matured and fertilized in vitro with frozen semen from riverine buffalo bull and cultured on cumulus cell monolayers. Resultant preimplantation stage embryos were cryopreserved by vitrification with ethylene glycol, ficoll and sucrose.
View Article and Find Full Text PDF