Pancreatic endocrine cells employ a sophisticated system of paracrine and autocrine signals to synchronize their activities, including glutamate, which controls hormone release and β-cell viability by acting on glutamate receptors expressed by endocrine cells. We here investigate whether alteration of the excitatory amino acid transporter 2 (EAAT2), the major glutamate clearance system in the islet, may occur in type 2 diabetes mellitus and contribute to β-cell dysfunction. Increased EAAT2 intracellular localization was evident in islets of Langerhans from T2DM subjects as compared with healthy control subjects, despite similar expression levels.
View Article and Find Full Text PDFBrazil has a diverse plant community, including underutilized non-conventional food crops (PANCs), which have the potential to be a rich source of food and contribute to food security. For assessing the folate content in a range of Brazilian PANCs, we extended the validation of an existing stable isotope dilution assay (SIDA) for the stably C-labelled 10-formyl-Pte[C]Glu (10-CHO-Pte[C]Glu). The SIDA method with an enzymatic treatment, purification step, and an LC-MS/MS measurement was validated regarding linearity, precision, LoD/LoQ, and recovery for 10-CHO-PteGlu.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
November 2023
Simultaneous activation of the incretin G-protein-coupled receptors (GPCRs) via unimolecular dual-receptor agonists (UDRA) has emerged as a new therapeutic approach for type 2 diabetes. Recent studies also advocate triple agonism with molecules also capable of binding the glucagon receptor. In this scoping review, we discuss the cellular mechanisms of action (MOA) underlying the actions of these novel and therapeutically important classes of peptide receptor agonists.
View Article and Find Full Text PDFMechanically-interlocked molecules (MIMs) are at the basis of artificial molecular machines and are attracting increasing interest for various applications, from catalysis to drug delivery and nanoelectronics. MIMs are composed of mechanically-interconnected molecular sub-parts that can move with respect to each other, imparting these systems innately dynamical behaviors and interesting stimuli-responsive properties. The rational design of MIMs with desired functionalities requires studying their dynamics at sub-molecular resolution and on relevant timescales, which is challenging experimentally and computationally.
View Article and Find Full Text PDFPsoriasis is a disease that causes keratinocytes to proliferate ten times faster than normal, resulting in chronic inflammation and immune cell infiltration in the skin. Aloe vera (A. vera) creams have been used topically for treating psoriasis because they contain several antioxidant species; however, they have several limitations.
View Article and Find Full Text PDFConspectusConcentration-driven processes in solution, i.e., phenomena that are sustained by persistent concentration gradients, such as crystallization and surface adsorption, are fundamental chemical processes.
View Article and Find Full Text PDFPancreatic β-cells, by secreting insulin, play a key role in the control of glucose homeostasis, and their dysfunction is the basis of diabetes development. The metabolic milieu created by high blood glucose and lipids is known to play a role in this process. In the last decades, cholesterol has attracted significant attention, not only because it critically controls β-cell function but also because it is the target of lipid-lowering therapies proposed for preventing the cardiovascular complications in diabetes.
View Article and Find Full Text PDFMulticentre preclinical randomized controlled trials (pRCTs) are a valuable tool to improve experimental stroke research, but are challenging and therefore underused. A common challenge regards the standardization of procedures across centres. We here present the harmonization phase for the quantification of sensorimotor deficits by composite neuroscore, which was the primary outcome of two multicentre pRCTs assessing remote ischemic conditioning in rodent models of ischemic stroke.
View Article and Find Full Text PDFUnlike molecular crystals, soft self-assembled fibers, micelles, vesicles, etc., exhibit a certain order in the arrangement of their constitutive monomers but also high structural dynamicity and variability. Defects and disordered local domains that continuously form-and-repair in their structures impart to such materials unique adaptive and dynamical properties, which make them, e.
View Article and Find Full Text PDFThe self-assembly of nanoparticles driven by small molecules or ions may produce colloidal superlattices with features and properties reminiscent of those of metals or semiconductors. However, to what extent the properties of such supramolecular crystals actually resemble those of atomic materials often remains unclear. Here, we present coarse-grained molecular simulations explicitly demonstrating how a behavior evocative of that of semiconductors may emerge in a colloidal superlattice.
View Article and Find Full Text PDFAn open challenge in self-assembly is learning how to design systems that can be conditionally guided towards different target structures depending on externally-controlled conditions. Using a theoretical and numerical approach, here we discuss a minimalistic self-assembly model that can be steered towards different types of ordered constructs at the equilibrium by solely tuning a facile selection parameter, namely the density of building blocks. Metadynamics and Langevin dynamics simulations allow us to explore the behavior of the system in and out of equilibrium conditions.
View Article and Find Full Text PDFStud Health Technol Inform
September 2022
«Progetto di Vita» ("PdV" Life Project) represents the crucial element to design and build the Quality of Life of persons with disabilities, in coherence with the UN Convention on the Rights of Persons with Disabilities. In Italy, Law no. 112/16 identifies in the PdV the principle around which to build a convergence of intents and interests for the realisation of the «Dopo di Noi» (After Us) that can take place «durante Noi» (during Us) through the construction of empowerment paths towards autonomy in a perspective of prevention, gradualness, emancipation and accompaniment to detachment.
View Article and Find Full Text PDFBackground: Cholesterol is central to pancreatic β-cell physiology and alterations of its homeostasis contribute to β-cell dysfunction and diabetes. Proper intracellular cholesterol levels are maintained by different mechanisms including uptake via the low-density lipoprotein receptor (LDLR). In the liver, the proprotein convertase subtilisin/kexin type 9 (PCSK9) routes the LDLR to lysosomes for degradation, thus limiting its recycling to the membrane.
View Article and Find Full Text PDFThe Excitatory Amino Acid Transporter 2 (EAAT2) accounts for 80% of brain glutamate clearance and is mainly expressed in astrocytic perisynaptic processes. EAAT2 function is finely regulated by endocytic events, recycling to the plasma membrane and degradation. Noteworthy, deficits in EAAT2 have been associated with neuronal excitotoxicity and neurodegeneration.
View Article and Find Full Text PDFSupramolecular polymers are composed of monomers that self-assemble non-covalently, generating distributions of monodimensional fibres in continuous communication with each other and with the surrounding solution. Fibres, exchanging molecular species, and external environment constitute a sole complex system, which intrinsic dynamics is hard to elucidate. Here we report coarse-grained molecular simulations that allow studying supramolecular polymers at the thermodynamic equilibrium, explicitly showing the complex nature of these systems, which are composed of exquisitely dynamic molecular entities.
View Article and Find Full Text PDFCarbon nanotubes, and synthetic organic nanotubes more generally, have in recent decades been widely explored for application in electronic devices, energy storage, catalysis and biosensors. Despite noteworthy progress made in the synthesis of nanotubular architectures with well-defined lengths and diameters, purely covalently bonded organic nanotubes have remained somewhat challenging to prepare. Here we report the synthesis of covalently bonded porous organic nanotubes (CONTs) by Schiff base reaction between a tetratopic amine-functionalized triptycene and a linear dialdehyde.
View Article and Find Full Text PDFIslet cell surface autoantibodies were previously found in subjects with type 1 diabetes mellitus (T1DM), but their target antigens and pathogenic mechanisms remain elusive. The glutamate transporter solute carrier family 1, member 2 (GLT1/EAAT2) is expressed on the membrane of pancreatic β-cells and physiologically controls extracellular glutamate concentrations thus preventing glutamate-induced β-cell death. We hypothesized that GLT1 could be an immunological target in T1DM and that autoantibodies against GLT1 could be pathogenic.
View Article and Find Full Text PDFIron is an essential element involved in a variety of physiological functions. In the pancreatic beta-cells, being part of Fe-S cluster proteins, it is necessary for the correct insulin synthesis and processing. In the mitochondria, as a component of the respiratory chain, it allows the production of ATP and reactive oxygen species (ROS) that trigger beta-cell depolarization and potentiate the calcium-dependent insulin release.
View Article and Find Full Text PDFBackground Brain injury and neurological deficit are consequences of cardiac arrest (CA), leading to high morbidity and mortality. Peripheral activation of the kynurenine pathway (KP), the main catabolic route of tryptophan metabolized at first into kynurenine, predicts poor neurological outcome in patients resuscitated after out-of-hospital CA. Here, we investigated KP activation in hippocampus and plasma of rats resuscitated from CA, evaluating the effect of KP modulation in preventing CA-induced neurological deficit.
View Article and Find Full Text PDFThe computer-aided investigation of protein folding has greatly benefited from coarse-grained models, that is, simplified representations at a resolution level lower than atomistic, providing access to qualitative and quantitative details of the folding process that would be hardly attainable, via all-atom descriptions, for medium to long molecules. Nonetheless, the effectiveness of low-resolution models is itself hampered by the presence, in a small but significant number of proteins, of nontrivial topological self-entanglements. Features such as native state knots or slipknots introduce conformational bottlenecks, affecting the probability to fold into the correct conformation; this limitation is particularly severe in the context of coarse-grained models.
View Article and Find Full Text PDF