Many studies implicate mitochondrial dysfunction as a key contributor to cell loss in Parkinson disease (PD). Previous analyses of dopaminergic (DAergic) neurons from patients with Lewy-body pathology revealed a deficiency in nuclear-encoded genes for mitochondrial respiration, many of which are targets for the transcription factor estrogen-related receptor gamma (Esrrg/ERRγ). We demonstrate that deletion of ERRγ from DAergic neurons in adult mice was sufficient to cause a levodopa-responsive PD-like phenotype with reductions in mitochondrial gene expression and number, that partial deficiency of ERRγ hastens synuclein-mediated toxicity, and that ERRγ overexpression reduces inclusion load and delays synuclein-mediated cell loss.
View Article and Find Full Text PDFChemotherapeutic drugs such as the alkylating agent Temozolomide (TMZ), in addition to reducing tumor mass, can also sensitize tumors to immune recognition by transient upregulation of multiple stress induced NKG2D ligands (NKG2DL). However, the potential for an effective response by innate lymphocyte effectors such as NK and γδ T cells that recognize NKG2DL is limited by the drug's concomitant lymphodepleting effects. We have previously shown that modification of γδ T cells with a methylguanine DNA methyltransferase (MGMT) transgene confers TMZ resistance via production of O-alkylguanine DNA alkyltransferase (AGT) thereby enabling γδ T cell function in therapeutic concentrations of TMZ.
View Article and Find Full Text PDFObjective: MLN4924, a pharmacological inhibitor of cullin neddylation, resulted in glioma cell apoptosis, deregulation of the S-phase of DNA synthesis and thus, offers great potential for the treatment of brain tumours. However, targeting the neddylation pathway with an MLN4924 treatment stabilized the hypoxia-inducible factor 1A (HIF1A), which is one of the main transcriptional enhancers of the immune checkpoint molecule PDL1 (programmid death ligand-1) in cancer cells. The influence of immune checkpoint molecules on glioma progression has recently been discovered; PDL1 overexpression in gliomas corresponds to a significant shortening of patient survival and a decrease of the anti-tumour immune response.
View Article and Find Full Text PDFWe designed multimodal tumor vaccine that consists of irradiated tumor cells infected with the oncolytic IL-12-expressing HSV-1 virus, M002. This vaccine was tested against the syngeneic neuroblastoma mouse model Neuro 2a injected into the right caudate nucleus of the immunocompetent A/J mice. Mice were vaccinated via intramuscular injection of multimodal vaccine or uninfected irradiated tumor cells at seven and 14 days after tumor establishment.
View Article and Find Full Text PDFDyskeratosis Congenita (DC) is an inherited multisystem premature aging disorder with characteristic skin and mucosal findings as well as a predisposition to cancer and bone marrow failure. DC arises due to gene mutations associated with the telomerase complex or telomere maintenance, resulting in critically shortened telomeres. The pathogenesis of DC, as well as several congenital bone marrow failure (BMF) syndromes, converges on the DNA damage response (DDR) pathway and subsequent elevation of reactive oxygen species (ROS).
View Article and Find Full Text PDFThe standard treatment of high-grade glioma presents a combination of radiotherapy, chemotherapy and surgery. Immunotherapy is proposed as a potential adjunct to standard cytotoxic regimens to target remaining microscopic disease following resection. We have shown ex vivo expanded/activated γδ T cells to be a promising innate lymphocyte therapy based on their recognition of stress antigens expressed on gliomas.
View Article and Find Full Text PDFDyskeratosis congenita (DC) is an inherited multisystem disorder of premature aging, cancer predisposition, and bone marrow failure caused by selective exhaustion of highly proliferative cell pools. DC patients also have a poor tolerance to chemo/radiotherapy and bone marrow transplantation. Although critically shortened telomeres and defective telomere maintenance contribute to DC pathology, other mechanisms likely exist.
View Article and Find Full Text PDFSpecific and efficient gene delivery to the lung has been hampered by liver sequestration of adenovirus serotype 5 (Ad5) vectors. The complexity of Ad5 liver tropism has largely been unraveled, permitting improved efficacy of Ad5 gene delivery. However, Kupffer cell (KC) scavenging and elimination of Ad5 still represent major obstacles to lung gene delivery strategies.
View Article and Find Full Text PDFThe gene therapy field is currently limited by the lack of vehicles that permit efficient gene delivery to specific cell or tissue subsets. Native viral vector tropisms offer a powerful platform for transgene delivery but remain nonspecific, requiring elevated viral doses to achieve efficacy. In order to improve upon these strategies, our group has focused on genetically engineering targeting domains into viral capsid proteins, particularly those based on adenovirus serotype 5 (Ad5).
View Article and Find Full Text PDFFormation of virus-specific replicative complexes (RCs) in infected cells is one of the most intriguing and important processes that determine virus replication and ultimately their pathogenesis on the molecular and cellular levels. Alphavirus replication was known to lead to formation of so-called type 1 cytopathic vacuoles (CPV1s), whose distinguishing feature is the presence of numerous membrane invaginations (spherules) and accumulation of viral nonstructural proteins (nsPs) at the cytoplasmic necks of these spherules. These CPV1s, modified endosomes and lysosomes, were proposed as the sites of viral RNA synthesis.
View Article and Find Full Text PDFBackground: Mesenchymal Progenitor/Stem Cells (MSC) respond to homing cues providing an important mechanism to deliver therapeutics to sites of injury and tumors. This property has been confirmed by many investigators, however, the efficiency of tumor homing needs to be improved for effective therapeutic delivery. We investigated the feasibility of enhancing MSC tumor targeting by expressing an artificial tumor-binding receptor on the MSC surface.
View Article and Find Full Text PDFPurpose: Recently, virotherapy has been proposed as a new therapeutic approach for ovarian cancer. Conditionally replicative adenoviruses (CRAd) may contain tumor-specific promoters that restrict virus replication to cancer cells. Mesothelin, a cell surface glycoprotein, is overexpressed in ovarian cancer but not in normal ovarian tissues.
View Article and Find Full Text PDFUse of cells as therapeutic carriers has increased in the past few years and has developed as a distinct concept and delivery method. Cell-based vehicles are particularly attractive for delivery of biotherapeutic agents that are difficult to synthesize, have reduced half-lives, limited tissue penetrance or are rapidly inactivated upon direct in vivo introduction. Initial studies using cell-based approaches served to identify some of the key factors for the success of this type of therapeutic delivery.
View Article and Find Full Text PDFMetallic nanoparticles (NPs) can be used for the diagnosis, imaging, and therapy of tumors and cardiovascular disease. However, targeted delivery of NPs to specific cells remains a major limitation for clinical realization of these potential treatment options. Herein, a novel strategy for the specific coupling of NPs to a targeted adenoviral (Ad) platform to deliver NPs to specific cells is defined.
View Article and Find Full Text PDFAdenovirus vectors have a number of advantages for gene therapy. However, because of their lack of tumor tropism and their preference for liver infection following systemic administration, they cannot be used for systemic attack on metastatic disease. Many epithelial tumors (e.
View Article and Find Full Text PDFPurpose: Adenovirus serotype 5 (Ad5) has been used for gene therapy with limited success due to insufficient infectivity in cells with low expression of the primary receptor, the coxsackie and adenovirus receptor (CAR). Evidence that adenovirus serotype receptors other than CAR may be of use was presented in previous studies that showed that the Ad3 receptor is expressed at high levels in ovarian cancer cells. We hypothesized that combined use of unique chimeric fibers in the context of novel mosaic adenovirus vectors would enhance infectivity via non-CAR pathways in ovarian cancer cells.
View Article and Find Full Text PDFAdenovirus (Ad)-based vectors are useful gene delivery vehicles for a variety of applications. Despite their attractive properties, many in vivo applications require modulation of the viral tropism. Targeting approaches applied to adenoviral vectors included genetic modification of the viral capsid, controlled expression of the transgene and combinatorial approaches that combine two or more targeting elements in single vectors.
View Article and Find Full Text PDFPurpose: Alternative and complementary therapeutic strategies need to be developed for metastatic breast cancer. Virotherapy is a novel therapeutic approach for the treatment of cancer in which the replicating virus itself is the anticancer agent. However, the success of virotherapy has been limited due to inefficient virus delivery to the tumor site.
View Article and Find Full Text PDFNatural and genetically modified oncolytic viruses have been systematically tested as anticancer therapeutics. Among this group, conditionally replicative adenoviruses have been developed for a broad range of tumors with a rapid transition to clinical settings. Unfortunately, clinical trials have shown limited antitumor efficacy partly due to insufficient viral delivery to tumor sites.
View Article and Find Full Text PDFAdenovirus serotype 5 (Ad5) has been used for gene therapy with limited success because of insufficient infectivity in cells with low expression of the primary receptor, the coxsackie and adenovirus receptor (CAR). To enhance infectivity in tissues with low CAR expression, tropism expansion is required via non-CAR pathways. Serotype 3 Dearing reovirus utilizes a fiber-like sigma1 protein to infect cells expressing sialic acid and junction adhesion molecule 1 (JAM1).
View Article and Find Full Text PDFThe development of novel therapeutic strategies is imperative for the treatment of advanced cancers like ovarian cancer and glioma, which are resistant to most traditional treatment modalities. In this regard, adenoviral (Ad) cancer gene therapy is a promising approach. However, the gene delivery efficiency of human serotype 5 recombinant adenoviruses (Ad5) in cancer gene therapy clinical trials to date has been limited, mainly due to the paucity of the primary Ad5 receptor, the coxsackie and adenovirus receptor (CAR), on human cancer cells.
View Article and Find Full Text PDFCancer is a difficult target for any therapeutic strategy; therefore, there is a continuous search for new therapeutic modalities, for application either alone or in combination. In this regard, gene-based therapy is a new approach that offers hope of improved control of tumors. Intensive research to apply gene therapy for cancer treatment has led to identification of the most important technical and theoretical barriers that need to be overcome for clinical success.
View Article and Find Full Text PDF