Publications by authors named "Perea-Gomez A"

The sex of an individual is determined at the time of fertilization. The mother passes on one sex chromosome, the X chromosome, and the father transmits the second sex chromosome, X or Y. Thus, an XX embryo becomes a female, whereas an XY individual becomes a male.

View Article and Find Full Text PDF
Article Synopsis
  • - This study focuses on how sex is determined in mammals, particularly through the role of specific cells in gonad development – Sertoli for testes and pregranulosa for ovaries.
  • - Researchers discovered that a particular form of the Wilms tumor suppressor gene, known as -KTS, plays a crucial role in determining female sex; lack of this variant hindered gonad differentiation in mice.
  • - The findings highlight that increased levels of -KTS can cause premature ovary development in XY embryos, leading to male-to-female sex reversal, indicating the importance of when this gene is activated in sexual differentiation.
View Article and Find Full Text PDF
Article Synopsis
  • Gonadal sex determination is a complex process that involves understanding the different cell lineages in developing testis and ovary, which is still not fully understood.
  • This study focuses on a newly identified population of supporting-like cells (SLCs) in developing mouse gonads, which is the first somatic cell lineage to be specified early in development.
  • The research reveals that SLCs start to show sex differences around E12.5, ultimately helping to form structures like the rete testis and rete ovarii, with WNT4 playing a key regulatory role in their development.
View Article and Find Full Text PDF

The transcription factors SRY and SOX9 and RSPO1/WNT4/β-Catenin signaling act as antagonistic pathways to drive testis and ovary development respectively, from a common gonadal primordium in mouse embryos. In this work, we took advantage of a double knockout mouse model to study gonadal development when and are both mutated. We show that the XX gonad mutant for or for both and develop as ovotestes, demonstrating that ectopic SOX9 function is not required for the partial female-to-male sex reversal caused by a mutation.

View Article and Find Full Text PDF

The visceral endoderm is a polarized epithelial monolayer necessary for early embryonic development in rodents. A key feature of this epithelium is an active endocytosis and degradation of maternal nutrients, in addition to being the source of various signaling molecules or inhibitors required for the differentiation and patterning of adjacent embryonic tissues. Endocytosis across the visceral endoderm epithelium involves specific cell surface receptors and an extensive sub-membrane vesicular system with numerous apical vacuoles/lysosomes.

View Article and Find Full Text PDF

NOTCH signalling is an evolutionarily conserved pathway involved in intercellular communication essential for cell fate choices during development. Although dispensable for early aspects of mouse development, canonical RBPJ-dependent NOTCH signalling has been shown to influence lineage commitment during embryonic stem cell (ESC) differentiation. NOTCH activation in ESCs promotes the acquisition of a neural fate, whereas its suppression favours their differentiation into cardiomyocytes.

View Article and Find Full Text PDF

During early development, modulations in the expression of Nodal, a TGFβ family member, determine the specification of embryonic and extra-embryonic cell identities. Nodal has been extensively studied in the mouse, but aspects of its early expression remain unaccounted for. We identified a conserved hotspot for the binding of pluripotency factors at the Nodal locus and called this sequence "highly bound element" (HBE).

View Article and Find Full Text PDF

The ability to follow and modify cell behaviour with accurate spatiotemporal resolution is a prerequisite to study morphogenesis in developing organisms. Electroporation, the delivery of exogenous molecules into targeted cell populations through electric permeation of the plasma membrane, has been used with this aim in different model systems. However, current localised electroporation strategies suffer from insufficient reproducibility and mediocre survival when applied to small and delicate organisms such as early post-implantation mouse embryos.

View Article and Find Full Text PDF

Cubilin (Cubn) is a multiligand endocytic receptor critical for the intestinal absorption of vitamin B12 and renal protein reabsorption. During mouse development, Cubn is expressed in both embryonic and extra-embryonic tissues, and Cubn gene inactivation results in early embryo lethality most likely due to the impairment of the function of extra-embryonic Cubn. Here, we focus on the developmental role of Cubn expressed in the embryonic head.

View Article and Find Full Text PDF

Nodal, a secreted factor known for its conserved functions in cell-fate specification and the establishment of embryonic axes, is also required in mammals to maintain the pluripotency of the epiblast, the tissue that gives rise to all fetal lineages. Although Nodal is expressed as early as E3.5 in the mouse embryo, its regulation and functions at pre- and peri-implantation stages are currently unknown.

View Article and Find Full Text PDF

Background: Reciprocal interactions between two extra-embryonic tissues, the extra-embryonic ectoderm and the visceral endoderm, and the pluripotent epiblast, are required for the establishment of anterior-posterior polarity in the mouse. After implantation, two visceral endoderm cell types can be distinguished, in the embryonic and extra-embryonic regions of the egg cylinder. In the embryonic region, the specification of the anterior visceral endoderm (AVE) is central to the process of anterior-posterior patterning.

View Article and Find Full Text PDF

After implantation, mouse embryos deficient for the activity of the transforming growth factor-beta member Nodal fail to form both the mesoderm and the definitive endoderm. They also fail to specify the anterior visceral endoderm, a specialized signaling center which has been shown to be required for the establishment of anterior identity in the epiblast. Our study reveals that Nodal-/- epiblast cells nevertheless express prematurely and ectopically molecular markers specific of anterior fate.

View Article and Find Full Text PDF

Blastomeres of the early mouse embryo are thought to be equivalent in their developmental properties at least until the eight-cell stage. However, the experiments that have led to this conclusion could not have taken into account either the spatial origin of individual blastomeres or the spatial allocation and fate of their progeny. We have therefore readdressed this issue having defined cell lineages in mouse embryos undergoing different patterns of cleavage in their second division cycle.

View Article and Find Full Text PDF

Patterning of the mouse embryo along the anteroposterior axis during body plan development requires migration of the distal visceral endoderm (DVE) towards the future anterior side by a mechanism that has remained unknown. Here we show that Nodal signalling and the regionalization of its antagonists are required for normal migration of the DVE. Whereas Nodal signalling provides the driving force for DVE migration by stimulating the proliferation of visceral endoderm cells, the antagonists Lefty1 and Cerl determine the direction of migration by asymmetrically inhibiting Nodal activity on the future anterior side.

View Article and Find Full Text PDF

Background: It is generally assumed that the migration of anterior visceral endoderm (AVE) cells from a distal to a proximal position at embryonic day (E)5.5 breaks the radial symmetry of the mouse embryo, marks anterior, and conditions the formation of the primitive streak on the opposite side at E6.5.

View Article and Find Full Text PDF

The anterior visceral endoderm plays a pivotal role in establishing anterior-posterior polarity of the mouse embryo, but the molecular nature of the signals required remains to be determined. Here, we demonstrate that Cerberus-like(-/-);Lefty1(-/-) compound mutants can develop a primitive streak ectopically in the embryo. This defect is not rescued in chimeras containing wild-type embryonic, and Cerberus-like(-/-);Lefty1(-/-) extraembryonic, cells but is rescued in Cerberus-like(-/-); Lefty1(-/-) embryos after removal of one copy of the Nodal gene.

View Article and Find Full Text PDF

Recent genetic and embryological experiments have demonstrated that head formation in the mouse embryo is dependent on signals provided by two organising centers during gastrulation, the anterior visceral endoderm (AVE) and the anterior primitive streak (also called the Early Gastrula Organiser, EGO). However the molecular nature of the signals triggering anterior neural formation from the epiblast is not clearly understood. The analysis of mouse mutants has allowed the identification of some of the molecular players involved in the process of head formation.

View Article and Find Full Text PDF

Genetic and embryological experiments have demonstrated an essential role for the visceral endoderm in the formation of the forebrain; however, the precise molecular and cellular mechanisms of this requirement are poorly understood. We have performed lineage tracing in combination with molecular marker studies to follow morphogenetic movements and cell fates before and during gastrulation in embryos mutant for the homeobox gene Otx2. Our results show, first, that Otx2 is not required for proliferation of the visceral endoderm, but is essential for anteriorly directed morphogenetic movement.

View Article and Find Full Text PDF

Recent embryological and genetic experiments have suggested that the anterior visceral endoderm and the anterior primitive streak of the early mouse gastrula function as head- and trunk-organising centers, respectively. Here, we report that HNF3beta and Lim1 are coexpressed in both organising centers suggesting synergistic roles of these genes in regulating organiser functions and hence axis development in the mouse embryo. To investigate this possibility, we generated compound HNF3beta and Lim1 mutant embryos.

View Article and Find Full Text PDF