Purpose: While there is solid experimental evidence of brain oxidative stress in animal models of epilepsy, it has not been thoroughly verified in epileptic human brain. Our purpose was to determine and to compare oxidative stress markers in the neocortex of epileptic and non-epileptic humans, with the final objective of confirming oxidative stress phenomena in human epileptic brain.
Methods: Neocortical samples from drug-resistant epilepsy patients submitted to epilepsy surgery (n=20) and from control, non-epileptic cortex samples (n=11) obtained from brain bank donors without neurological disease, were studied for oxidative stress markers: levels of reactive oxygen species (ROS), such as superoxide anion (O2(-)); activity of antioxidant enzymes: superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and glutathione reductase (GR); and markers of damage to biomolecules (lipid peroxidation and DNA oxidation).
There is an increasing body of evidence implicating eicosanoids (arachidonic acid metabolites) in the experimental generation of epileptic seizures and the development of epilepsy. Our purpose was to measure the synthesis of eicosanoids from the cyclooxygenase and lipoxygenase pathways in human brain neocortex tissue samples obtained from epileptic patients, and to compare them with non-epileptic control subjects. Epileptic neocortex specimens demonstrated a significant increase (P<0.
View Article and Find Full Text PDFObjectives: To evaluate the presence of oxidative stress and alterations in the levels of two cytoprotective agents, prostaglandin E2 and nitric oxide, in the gastrointestinal tract of aging rats.
Methods: The production of superoxide anion, lipid peroxides, levels of superoxide dismutase and catalase, and production of prostaglandin E2 and nitric oxide in the stomach and duodenum of rats were determined at 1.5, 3, 12, 18 and 24 months of age.
Am J Physiol Heart Circ Physiol
August 2004
A previous study with aortic segments isolated from rats fed a fish oil-rich diet indicated an increase in acetylcholine-induced nitric oxide (.NO)-mediated relaxation. However, it remained to be elucidated whether a fish oil-rich diet affects the vascular activity per se and the point of the.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
October 2003
We examined in vitro the source and role of basal nitric oxide (NO) in proximal segments of guinea pig taenia caeci in nonadrenergic, noncholinergic (NANC) conditions. Using electron paramagnetic resonance (EPR), we measured the effect of the NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 10(-4) M), the neuronal blocker tetrodotoxin (TTX, 10(-6) M), or both on spontaneous contractions and on the production of basal NO. Both L-NAME and TTX, when tested alone, increased the amplitude and frequency of contractions.
View Article and Find Full Text PDF