Publications by authors named "Pere Gilabert"

Accurate detection and classification of lung malignancies are crucial for early diagnosis, treatment planning, and patient prognosis. Conventional histopathological analysis is time-consuming, limiting its clinical applicability. To address this, we present a dataset of 691 high-resolution (1200 × 1600 pixels) histopathological lung images, covering adenocarcinomas, squamous cell carcinomas, and normal tissues from 45 patients.

View Article and Find Full Text PDF

Wireless Capsule Endoscopy is a medical procedure that uses a small, wireless camera to capture images of the inside of the digestive tract. The identification of the entrance and exit of the small bowel and of the large intestine is one of the first tasks that need to be accomplished to read a video. This paper addresses the design of a clinical decision support tool to detect these anatomical landmarks.

View Article and Find Full Text PDF

Colon Capsule Endoscopy (CCE) is a minimally invasive procedure which is increasingly being used as an alternative to conventional colonoscopy. Videos recorded by the capsule cameras are long and require one or more experts' time to review and identify polyps or other potential intestinal problems that can lead to major health issues. We developed and tested a multi-platform web application, AI-Tool, which embeds a Convolution Neural Network (CNN) to help CCE reviewers.

View Article and Find Full Text PDF

This paper presents an envelope linearization technique to compensate for the nonlinear distortion of envelope tracking (ET) power amplifiers (PAs) for 5G new radio (NR) mobile terminals. The proposed envelope optimization (EOPT) method is agnostic of the nonlinear distortion generated in the envelope supply path and can compensate for the nonlinear distortion at the ET PA output without the need to monitor the output at the envelope tracking modulator (ETM). The linearization system in the envelope path is based on the envelope generalized memory polynomial (EGMP) behavioral model.

View Article and Find Full Text PDF

The power amplifier (PA) is the most critical subsystem in terms of linearity and power efficiency. Digital predistortion (DPD) is commonly used to mitigate nonlinearities while the PA operates at levels close to saturation, where the device presents its highest power efficiency. Since the DPD is generally based on Volterra series models, its number of coefficients is high, producing ill-conditioned and over-fitted estimations.

View Article and Find Full Text PDF

This paper presents an auto-tuning approach for dual-input power amplifiers using a combination of global optimisation search algorithms and adaptive linearisation in the optimisation of a multiple-input power amplifier. The objective is to exploit the extra degrees of freedom provided by dual-input topologies to enhance the power efficiency figures along wide signal bandwidths and high peak-to-average power ratio values, while being compliant with the linearity requirements. By using heuristic search global optimisation algorithms, such as the simulated annealing or the adaptive Lipschitz Optimisation, it is possible to find the best parameter configuration for PA biasing, signal calibration, and digital predistortion linearisation to help mitigating the inherent trade-off between linearity and power efficiency.

View Article and Find Full Text PDF