We discuss and illustrate recent advances that have been made to image the distribution of metabolites among cells and tissues of plants using different mass spectrometry technologies. These technologies include matrix-assisted laser desorption ionization, desorption electrospray ionization, and secondary ion mass spectrometry. These are relatively new technological applications of mass spectrometry and they are providing highly spatially resolved data concerning the cellular distribution of metabolites.
View Article and Find Full Text PDFA novel mass spectrometric imaging method is developed to reduce the data acquisition time and provide rich chemical information using a hybrid linear ion trap-orbitrap mass spectrometer. In this method, the linear ion trap and orbitrap are used in tandem to reduce the acquisition time by incorporating multiple linear ion trap scans during an orbitrap scan utilizing a spiral raster step plate movement. The data acquisition time was decreased by 43-49% in the current experiment compared to that of orbitrap-only scans; however, 75% or more time could be saved for higher mass resolution and with a higher repetition rate laser.
View Article and Find Full Text PDFMass spectrometric imaging has been utilized to localize individual astrocytes and to obtain cholesterol populations at the single-cell level in laser desorption ionization (LDI) with colloidal silver. The silver ion adduct of membrane-bound cholesterol was monitored to detect individual cells. Good correlation between mass spectrometric and optical images at different cell densities indicates the ability to perform single-cell studies of cholesterol abundance.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
February 2010
Colloidal graphite is a promising matrix for atmospheric pressure laser desorption/ionization mass spectrometry. Intact [M+H](+) and [M-H](-) ions are readily produced from a wide range of small molecule plant metabolites, particularly anthocyanins, fatty acids, lipids, glycerides, and ceramides. Compared with a more traditional organic acid matrix, colloidal graphite provides more efficient ionization for small hydrophobic molecules and has a much cleaner background spectrum, especially in negative ion mode.
View Article and Find Full Text PDF