Publications by authors named "Perchyonok V"

The aim of this study is to evaluate the effect of chitosan or nanodiamond incorporation on the color stability and surface roughness of a bisacrylic resin subjected to artificial aging. Four bisacrylic resins were evaluated, namely, control, chitosan-modified material, nanodiamond-modified material, and chitosan-nanodiamond-modified material. Twenty-four specimens were prepared for each material.

View Article and Find Full Text PDF

Healing is a specific biological process related to the general phenomenon of growth and tissue regeneration and is a process generally affected by several systemic conditions or as detrimental side-effects of chemotherapy- and radiotherapy-induced inflammation of the oral mucosa. The objectives of this study is to evaluate the novel chitosan based functional drug delivery systems, which can be successfully incorporated into "dual action bioactive restorative materials", capable of inducing in vitro improved wound healing prototype and containing an antibiotic, such as nystatin, krill oil as an antioxidant and hydroxyapatite as a molecular bone scaffold, which is naturally present in bone and is reported to be successfully used in promoting bone integration when implanted as well as promoting healing. The hydrogels were prepared using a protocol as previously reported by us.

View Article and Find Full Text PDF

IPNs are unique "alloys" of cross-linked polymers in which at least one network is synthesized and/or cross-linked in the presence of the other. IPNs are also known as entanglements of polymer networks that are ideally held together only by permanent topological interactions. The objectives of this study are to evaluate novel chitosan-based functional drug delivery systems that can be successfully incorporated into "dual action bioactive tooth restorative materials".

View Article and Find Full Text PDF

Objective: The purpose of the study was to design and evaluate novel functional chitosan hydrogels (chitosan-H-propolis, chitosan-H-propolis-nystatin and chitosan-H-nystatin) by using the chitosan-H polymer as "dual function restorative materials".

Materials And Methods: The nystatin/antioxidant carrier gel was prepared by dispersion of the corresponding component in glycerol and 3% acetic acid with 5% chitosan gelling agent was then added to the dispersion with continuous mixing. The natural bio-adhesive functionalized chitosan hydrogels were combined with built in drug delivery system and bio-actives such as propolis in order to increase the dentin bond strength capacity and maintain therapeutic properties of the alternative drug delivery system.

View Article and Find Full Text PDF

In this study we developed and evaluated a prototype of an effective occlusive mucoadhesive system for prophylaxis and/or treatment of oral mucositis based on chitosan and gelatine models together with nystatin as a prophylactic agent incorporated into the formulation and investigated drug release in-vitro. Results of in vitro studies showed that chitosan and gelatine based gels posses properties that makes them excellent candidates for treatment of oral mucositis. These properties include not only the palliative effects of an occlusive dressing but also the potential for delivering therapeutic compounds with chitosan gels providing drug concentrations above their minimum inhibition concentration and extending the retention time in the oral cavity due to their bioadhesive properties.

View Article and Find Full Text PDF

A novel approach in target specific molecular prototype drug delivery system concerns the attempt to employ radical affording substances (RAS) or radical quenching substances (RQS) as prodrugs able to produce irreversible damage on the desired target and therefore to stimulate cellular apoptosis. However, radical species generated can react quickly within the chemical environment prior to reaching its proper site of action. In this short communication, we report our investigations towards developing two alternative novel, simple, flexible and effective drug delivery systems that provide optimal dosage of drugs precisely where and when needed and therefore achieve and sustain a complex delivery profile.

View Article and Find Full Text PDF

High level ab initio and density functional calculations have been employed to determine the most appropriate manner in which to truncate an arginine-bound carboxylate motif, using the substrate mechanism of Pyruvate Formate-Lyase as a case study. The results show that, both qualitatively and quantitatively, a neutral carboxylic acid provides a more realistic approximation to the salt bridge arrangement than does a bare anionic carboxylate substituent.

View Article and Find Full Text PDF