Publications by authors named "Perchellet E"

Background: Synthetic 6,7-annulated-4-substituted indole compounds, which elicit interesting antitumor effects in murine L1210 leukemia cells, were tested for their ability to inhibit human HL-60 tumor cell proliferation, disrupt mitosis and cytokinesis, and interfere with tubulin and actin polymerization in vitro.

Materials And Methods: Various markers of metabolic activity, mitotic disruption and cytokinesis were used to assess the effectiveness of the drugs in the HL-60 tumor cell system. The ability of annulated indoles to alter the polymerizations of purified tubulin and actin were monitored in cell-free assays and were compared to the effects of drugs known to disrupt the dynamic structures of the mitotic spindle and cleavage furrow.

View Article and Find Full Text PDF

Background: Because annulated indoles have almost no representation in the PubChem or MLSMR databases, an unprecedented class of an indole-based library was constructed, using the indole aryne methodology, and screened for antitumor activity. Sixty-six novel 6,7-annulated-4-substituted indole compounds were synthesized, using a strategic combination of 6,7-indolyne cycloaddition and cross-coupling reactions under both Suzuki-Miyaura and Buchwald-Hartwig conditions, and tested for their effectiveness against murine L1210 tumor cell proliferation in vitro.

Materials And Methods: Various markers of tumor cell metabolism, DNA degradation, mitotic disruption, cytokinesis and apoptosis were assayed in vitro to evaluate drug cytotoxicity.

View Article and Find Full Text PDF

Background: Because quinazolines and their derivatives exhibit a wide range of pharmacological profiles, there is a continuous interest among synthetic and medicinal chemists in the discovery of more potent analogs. Ten novel quinazoliniminium salts were synthesized and tested for their effectiveness against murine and human tumor cell proliferation in vitro.

Materials And Methods: Various markers of tumor cell metabolism, DNA degradation and mitotic disruption were assayed in vitro to evaluate drug cytotoxicity.

View Article and Find Full Text PDF

A series of 1,4-diaryl tetrazol-5-ones were synthesized by copper mediated N-arylation of 1-phenyl-1H-tetrazol-5(4H)-one with aryl boronic acids, o-R(1)C(6)H(4)B(OH)(2) where R(1)=H, OMe, Cl, CF(3), Br, CCH. The 1,4-diaryl tetrazol-5-ones substituted with OMe, Cl, CF(3), Br underwent thionation with Lawesson's reagent to yield the corresponding 5-thio derivatives. The 1-(2-bromophenyl)-4-phenyl-1H-tetrazole-5(4H)-thione so obtained was subjected to lithiation/protonation and Sonogashira coupling to produce 1,4-diphenyl-1H-tetrazole-5(4H)-thione and 1-(2-ethynylphenyl)-4-phenyl tetrazole-5-thione, respectively.

View Article and Find Full Text PDF

Substituted quinolines (PQ code number), which reduce colony formation and increase gap junctional intercellular communication, were tested for their ability to interact with various molecular targets in murine and human tumor cell lines in vitro. Various markers of tumor cell metabolism, DNA fragmentation, mitotic disruption, apoptosis induction and growth factor receptor signaling pathways were assayed in vitro to evaluate drug cytotoxicity. Based on its ability to inhibit the metabolic activity of suspension cultures of leukemic L1210 cells at days 2 and 4 in vitro, PQ1 succinic acid salt is the most effective antiproliferative agent among the synthetic quinoline analogs tested.

View Article and Find Full Text PDF

Pilot-scale libraries of eight-membered medium ring lactams (MRLs) and related tricyclic compounds (either seven-membered lactams, thiolactams or amines) were screened for their ability to inhibit the catalytic activity of human recombinant 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in vitro. A dozen of the synthetic compounds mimic the inhibition of purified HMG-CoA reductase activity caused by pravastatin, fluvastatin and sodium salts of lovastatin, mevastatin and simvastatin in this cell-free assay, suggesting direct interaction with the rate-limiting enzyme of cholesterol biosynthesis. Moreover, several MRLs inhibit the metabolic activity of L1210 tumor cells in vitro to a greater degree than fluvastatin, lovastatin, mevastatin and simvastatin, whereas pravastatin is inactive.

View Article and Find Full Text PDF

A class of substituted 1H,7H-5a,6,8,9-tetrahydro-1-oxopyrano[4,3-b][1]benzopyrans (tricyclic pyrones; TPs) was synthesized from a one-pot condensation reaction of 6-substituted 4-hydroxy-2-pyrones and cyclohexenecarboxaldehydes. The reaction involves a 6pi-electrocyclic ring closing process, and stereo- and regioselectivities were examined. C3-Pyridyl-containing TPs may represent a novel synthetic class of microtubule de-stabilizing anti-cancer drugs that inhibit macromolecule synthesis, tubulin polymerization, and the proliferation of a spectrum of wild-type and multi-drug resistant tumor cell lines in vitro.

View Article and Find Full Text PDF

We have prepared a novel speculative eight-membered lactam demonstration library based on the skeletal structure of the potent antitumor marine natural product octalactin A. The basic scaffold was readily constructed in a convergent fashion via ring-closing metathesis chemistry from the corresponding diene amides. A cursory examination of the biological properties of the library validates the relevance and significance of these structures.

View Article and Find Full Text PDF

Total syntheses of (+/-)-ovalicin, its C4(S( *))-isomer 44, and C5-side chain intermediate 46 were accomplished via an intramolecular Heck reaction of (Z)-3-(tert-butyldimethylsilyloxy)-1-iodo-1,6-heptadiene and a catalytic amount of palladium acetate. Subsequent epoxidation, dihydroxylation, methylation, and oxidation led to (3S( *),5R( *),6R( *))-5-methoxy-6-(tert-butyldimethylsilyloxy)-1-oxaspiro[2.5]octan-4-one (2), a reported intermediate.

View Article and Find Full Text PDF

Background: Substituted triptycenes (TT code number), which block nucleoside transport, macromolecule syntheses and DNA topoisomerase activities, induce cytochrome c release and apoptotic DNA fragmentation, inhibit the proliferation of drug-sensitive and -resistant tumor cells in the nM range in vitro and rapidly trigger the collapse of mitochondrial transmembrane potential in cell and cell-free systems. Because mitochondrial permeability transition (MPT) requires more than depolarization, antitumor TTs were tested for their ability to directly trigger specific markers of MPT in isolated mitochondria.

Materials And Methods: Large amplitude swelling and Ca2+ release were assayed in isolated mitochondria to demonstrate TT-induced MPT.

View Article and Find Full Text PDF

Synthetic analogs of 1,4-anthraquinone (AQ code number), which block nucleoside transport, decrease DNA, RNA and protein syntheses, trigger cytochrome c release without caspase activation, induce apoptotic DNA fragmentation and inhibit the proliferation of wild-type and multidrug resistant tumor cells in the nM range in vitro, rapidly cause the collapse of mitochondrial transmembrane potential in cell and cell-free systems. Because mitochondrial permeability transition (MPT) requires more than depolarization to occur, antitumor AQs were tested for their ability to directly trigger specific markers of MPT in isolated mitochondria. In contrast to a spectrum of conventional anticancer drugs that are inactive, various AQs interact with isolated mitochondria in a concentration- and time-dependent manner to rapidly cause large amplitude swelling and Ca2+ release in relation with their effectiveness against L1210, HL-60 and LL/2 tumor cells in vitro.

View Article and Find Full Text PDF

Background: Synthetic pyranoxanthenones, pyranothioxanthenones and their pyrazole-fused derivatives, which bind to DNA, block the G2 + M-phases of the cell cycle and inhibit the proliferation of ascitic and solid tumor cell lines in vitro, were tested for their ability to induce apoptosis in the HL-60 cell system.

Materials And Methods: Various markers of tumor cell metabolism, apoptosis induction and mitochondrial permeability transition (MPT) were assayed in vitro to evaluate drug cytotoxicity.

Results: All these compounds, and especially the pyrazole-fused pyranoxanthenones 7, 8 and 10, which were effective in the 3-5 microM range and were more potent than the pyranoxanthenones, reduced the proliferation of HL-60 cells at 2 and 4 days.

View Article and Find Full Text PDF

Novel substituted triptycene bisquinones and 1, 4-anthracenediones were synthesized and screened for their anti-cancer activities. A number of analogs were synthesized utilizing various synthetic transformations and found to elicit interesting antitumor effects. Analogs included water-soluble pro-drugs and ammonium salts.

View Article and Find Full Text PDF

Since synthetic analogs of triptycene (TT code number), such as bisquinones TT2 and TT13, can trigger cytochrome c release without caspase activation and retain their ability to induce apoptosis in multidrug-resistant (MDR) tumor cells, fluorescent probes of transmembrane potential have been used to determine whether these antitumor compounds might directly target mitochondria in cell and cell-free systems to cause the collapse of mitochondrial membrane potential ( downward arrow Deltapsim) that is linked to permeability transition pore (PTP) opening. Using JC-1 dye, the abilities of various TT analogs to induce the downward arrow Deltapsim in wild-type and MDR HL-60 cells are rapid (within 5-20 min), irreversible after drug removal, concentration dependent in the 0.64-25 microM range, and generally related to their antitumor activities in vitro.

View Article and Find Full Text PDF

Since synthetic analogs of 1,4-anthraquinone (AQ code number), such as AQ8, AQ9 and AQ10, can trigger cytochrome c release without caspase activation and retain their ability to induce apoptosis in multidrug-resistant (MDR) tumor cells, fluorescent probes of transmembrane potential have been used to determine whether these anti-tumor compounds might directly target mitochondria in cell and cell-free systems to cause the collapse of mitochondrial membrane potential (/Deltapsim) that is linked to permeability transition pore (PTP) opening. Using JC-1 dye, the abilities of various AQ analogs to induce the /Deltapsim in wild-type and MDR HL-60 cells are rapid (within 2.5-10 min), irreversible after drug removal, concentration dependent in the 0.

View Article and Find Full Text PDF

A series of N,N'-disubstituted imidazole-4,5-dicarboxamides (I45DCs) were prepared and tested in order to determine their antiproliferative activity against HL-60 cells. The design of the I45DCs was based in part on the structures of trisubstituted purines complexed with cyclin dependent kinase 2 (cdk2), a protein important in regulating the G1/S transition in the cell cycle, and the intramolecular hydrogen bond in I45DCs that predisposes the conformation to one that mimics substituted adenosines. A majority of the I45DCs in this study inhibit proliferation of HL-60 cells as measured by an MTS mitochondrial functional assay with IC50's in the 2.

View Article and Find Full Text PDF

Synthetic triptycene analogs (TT code number) mimic the antitumor effects of daunorubicin (DAU) in vitro, but have the advantage of blocking nucleoside transport, inhibiting both DNA topoisomerase I and II activities, and retaining their efficacy in multidrug-resistant (MDR) tumor cells. Since TT bisquinones induce poly(ADP-ribose) polymerase-1 (PARP-1) cleavage at 6 h and internucleosomal DNA fragmentation at 24 h, which are, respectively, early and late markers of apoptosis, these antitumor drugs were tested for their ability to trigger the release of mitochondrial cytochrome c (Cyt c) and the caspase activation cascade in the HL-60 cell system. Based on their ability to reduce the viability of wild-type, drug-sensitive HL-60-S cells in the nanomolar range, six lead antitumor TT bisquinones have been identified so far: TT2, TT13, TT16, TT19, TT24 and TT26.

View Article and Find Full Text PDF

Tetracyclic pyrans (+)-chloropuupehenone (1) and (+)-chloropuupehenol (5) and its C8-R-isomer (+)-3 were synthesized via a one-pot condensation of 1-chloro-2-lithio-3,5,6-tris(tert-butyldimethylsilyloxy)benzene (8) with (4aS,8aS)-3,4,4a,5,6,7,8,8a-octahydro-2,5,5,8a-tetramethylnaphthalene-1-carboxaldehyde (7). The major condensation product, (4aS,6aR,12bS)-2H-9,10-bis(tert-butyldimethylsilyloxy)-11-chloro-1,3,4,4a,5,6,6a,12b-octahydro-4,4,6a,12b-tetramethyl-benzo[a]xanthene (4), after desilylation provided tetracyclic pyran (+)-(4aS,6aR,12bS)-2H-11-chloro-1,3,4,4a,5,6,6a,12b-octahydro-4,4,6a,12b-tetramethyl-benzo[a]xanthene-9,10-diol (3). At a dosage of 42 mg/rat over 8 h, pyran diol 3 inhibited the intestinal absorption of cholesterol by 71% in rats.

View Article and Find Full Text PDF

Synthetic analogs of 1,4-anthraquinone (AQ code number), a compound that mimics the antiproliferative effects of daunorubicin (daunomycin) in the nanomolar range in vitro but has the advantage of blocking nucleoside transport and retaining its efficacy in multidrug-resistant tumor cells, were tested for their ability to induce apoptosis in the HL-60 cell system. AQ10 and, especially, the new lead antiproliferative compounds AQ8 and AQ9 reduce the growth and integrity of wild-type, drug-sensitive, HL-60-S cells more effectively than AQ1, suggesting that various methyl group substituents at C6 may enhance the bioactivity of the parent compound. Internucleosomal DNA fragmentation, a late marker of apoptosis, is similarly induced in a biphasic manner by increasing concentrations of AQ8 and AQ9 at 24 hr.

View Article and Find Full Text PDF

Synthetic triptycene analogs (TT code number) mimic the antitumor effects of daunorubicin in the nanomolar range in vitro, but have the advantage of blocking nucleoside transport and retaining their efficacy in multidrug-resistant (MDR) tumor cells. Since TT bisquinones induce poly(ADP-ribose) polymerase-1 cleavage at 6 h and internucleosomal DNA fragmentation at 24 h, which are, respectively, early and late markers of apoptosis, these lead antitumor drugs were tested for their ability to trigger the DNA topoisomerase (Topo) inhibitions responsible for the initial and massive high-molecular-weight cleavage of DNA required for tumor cells to commit apoptosis. Interestingly, antitumor TTs have the unusual ability to inhibit, in a concentration-dependent manner, the relaxation of supercoiled plasmid DNA catalyzed by both purified human Topo I and II enzymes.

View Article and Find Full Text PDF

In contrast to their inactive parent compound triptycene (code name TT0), new synthetic analogs (TT code number) mimic the antitumor effects of the anthracycline quinone antibiotic daunorubicin (DAU) in the nM range in vitro but have the additional advantage of also blocking nucleoside transport and retaining their efficacy in multidrug-resistant (MDR) tumor cells. Since TT bisquinones may induce DNA fragmentation at 24 h by an active mechanism that requires RNA and protein syntheses and protease activities, the most cytotoxic of them, TT24, was tested for its ability to induce poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, an early marker of apoptosis. PARP-1 cleavage starts at 2-3 h and is maximally induced at 6 h by 1.

View Article and Find Full Text PDF

In contrast to their inactive parent compound triptycene (code name TT0), several new synthetic analogs (TT code number) have antileukemic activities and remain effective in daunorubicin (DAU)-resistant tumor sublines in vitro. Among variously substituted 9,10-dihydro-9,10-[1,2]benzenoanthracene-1,4,5,8-tetraones, a total of six lead antitumor compounds have been identified, and their code names are TT2, TT13, TT16, TT19, TT21 and TT24. These active antitumor triptych structures have bisquinone functionality, and various bromo, methoxy, methylamino and/or dimethylamino substitutions with or without longer alkyl chains on the amino function.

View Article and Find Full Text PDF

The synthesis and structural determination of a number of new rhodomycin derivatives, modified in the sugar part are described. The cytotoxicity against leukemic L1210 cells of these compounds is reported, along with beta-rhodomycinone and two regioisomers of the above compounds, which were isolated during the synthetic procedure.

View Article and Find Full Text PDF

A number of substituted 9,10-dihydro-9,10-[1,2]benzenoanthracene-1,4,5,8-tetrones have been synthesized and their anticancer and antimalarial activities evaluated. A one-pot synthesis of 2,5,8-trimethoxy-9,10-dihydro-9,10-[1,2]benzenoanthracene-1,4-dione (4) was achieved by heating a mixture of 1,4-dimethoxyanthracene, methoxyhydroquinone, silver oxide, and zinc iodide in toluene. Regioselective bromination of 4 and 2-methoxy-9,10-dihydro-9,10-[1,2]benzenoanthracene-1,4,5,8-tetrone (7) with N-bromosuccinimide provided 2-bromo-3,5,8-trimethoxy-9,10-dihydro-9,10-[1,2]benzenoanthracene-1,4-dione and 2-bromo-3-methoxy-9,10-dihydro-9,10-[1,2]benzenoanthracene-1,4,5,8-tetrone (1), respectively.

View Article and Find Full Text PDF