The design of innovative therapeutic strategies enabling the selective destruction of tumor cells while sparing healthy tissues remains highly challenging in cancer therapy. Here, we show that the combination of two targeted therapies, including bevacizumab (), and a β-glucuronidase-responsive albumin-binding prodrug of monomethyl auristatin E (), is efficient for the treatment of colorectal cancer implanted in mice. This combined therapy produces a therapeutic activity superior to that of the association of and currently used to treat patients with this pathology.
View Article and Find Full Text PDFEnhancing the selectivity of anticancer drugs currently used in the clinic is of great interest in order to propose more efficient chemotherapies with fewer side effects for patients. In this context, we developed a β-cyclodextrin trimer that binds to circulating albumin to form the corresponding bioconjugate in the bloodstream. This latter can then entrap doxorubicin following its i.
View Article and Find Full Text PDFThe development of selective anticancer drugs avoiding side effects met in the course of almost all current treatments is of major interest for cancer patients. Here, we report on a novel β-glucuronidase-responsive drug delivery system allowing the in vivo synthesis of triple-loaded albumin conjugate. Following intravenous administration, the glucuronide prodrug reacts in the blood stream with the cysteine-34 residue of circulating albumin through thio-Michael addition, enabling the bioconjugation of three Monomethylauristatin E (MMAE) molecules to the plasmatic protein.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2019
The development of efficient protocols for cancer diagnosis remains highly challenging. An emerging approach relies on the detection in exhaled breath of volatile organic compounds (VOC) produced by tumours. In this context, described here is a novel strategy in which a VOC-based probe is converted selectively in malignant tissues, by a tumour-associated enzyme, for releasing the corresponding VOC.
View Article and Find Full Text PDFA bioorthogonal approach is explored to release the content of nanoparticles on demand. Exploiting our recently described click-and-release technology, we developed a new generation of cleavable micelles able to disassemble through a sequential enzymatic and bioorthogonal activation process. Proof-of-concept experiments showed that this new approach could be successfully used to deliver the substances encapsulated into micelles in living cells as well as in mice by two complementary targeted strategies.
View Article and Find Full Text PDFWe report on the synthesis, and biological evaluations of a dimeric β-glucuronidase-responsive albumin-binding prodrug designed for the double release of MMAE upon a single enzymatic activation step. This prodrug produced a significant antitumour activity in mice bearing subcutaneous LS174T colorectal adenocarcinoma xenografts without inducing side effects.
View Article and Find Full Text PDFWe report on the synthesis and in vitro biological evaluations of a nanomolar protein kinase inhibitor (PKI) and its β-glucuronidase-responsive albumin-binding prodrug. The highly potent PKI is 400-3400 times more cytotoxic than the well-known PKI Roscovitine. The prodrug is able to bind covalently to human serum albumin through Michael addition and release the cytotoxic PKI in the presence of β-glucuronidase, an enzyme over-expressed in the microenvironment of solid tumours.
View Article and Find Full Text PDFSeveral folate-drug conjugates are currently undergoing clinical trials for application in oncology. However, the efficacy of folate-targeted therapy strongly depends on the folate receptor (FR) abundance at the surface of cancer cells. Recently, it has been postulated that up-regulation of FRα by means of chemo-sensitizing agents could enhance the anticancer activity of FR-drug conjugates.
View Article and Find Full Text PDFThe development of novel therapeutic strategies allowing the destruction of tumour cells while sparing healthy tissues is one of the main challenges of cancer chemotherapy. Here, we report on the design and antitumour activity of a low-molecular-weight drug delivery system programmed for the selective release of the potent monomethylauristatin E in the tumour microenvironment of solid tumours. After intravenous administration, this compound binds covalently to plasmatic albumin through Michael addition, thereby enabling its passive accumulation in tumours where extracellular β-glucuronidase initiates the selective release of the drug.
View Article and Find Full Text PDFThe design and synthesis of novel peptides that inhibit angiogenesis is an important area for anti-angiogenic drug development. Cyclic and small peptides present several advantages for therapeutic application, including stability, solubility, increased bio-availability and lack of immune response in the host cell. We describe here the synthesis and biological evaluations of a new cyclic peptide analog of CBO-P11: cyclo(RIKPHE), designated herein as CBO-P23M, a hexamer peptide encompassing residues 82 to 86 of VEGF which are involved in the interaction with VEGF receptor-2.
View Article and Find Full Text PDFWe report the study of a new drug delivery system programmed for the selective internalisation and the subsequent enzyme-catalysed release of two monomethylauristatin E molecules inside FR-positive cancer cells. This targeting device is the most potent β-galactosidase-responsive folate-drug conjugate developed so far, killing cancer cells expressing a medium level of FR at low nanomolar concentrations.
View Article and Find Full Text PDFThe development of mechanically interlocked molecular systems programmed to operate autonomously in biological environments is an emerging field of research with potential medicinal applications. Within this framework, functional rotaxane- and pseudorotaxane-based architectures are starting to attract interest for the delivery of anticancer drugs, with the ultimate goal to improve the efficiency of cancer chemotherapy. Here, we report an enzyme-sensitive [2]-rotaxane designed to release a potent anticancer drug within tumor cells.
View Article and Find Full Text PDFThe rise of chemical biology has led to the development of sophisticated molecular devices designed to explore and manipulate biological processes. Within this framework, we developed the first chemical system programmed for the selective internalization and subsequent enzyme-catalyzed double release of bioactive compounds inside a targeted population of cells. This system is composed of five distinct units including a targeting ligand, an enzymatic trigger, a self-immolative linker and two active compounds articulated around a chemical amplifier.
View Article and Find Full Text PDFCytarabine combined with an anthracycline or an anthracenedione represents the usual intensive induction therapy for the treatment of AML. However, this protocol induces severe side effects and treatment-related mortality due to the lack of selectivity of these cytotoxic agents. In this paper, we present the study of the first galactosidase-responsive molecular "Trojan Horse" programmed for the delivery of doxorubicin exclusively inside AML blasts over-expressing the folate receptor (FR).
View Article and Find Full Text PDF