The increasing availability of experimental and computational protein structures entices their use for function prediction. Here we develop an automated procedure to identify enzymes involved in metabolic reactions by assessing substrate conformations docked to a library of protein structures. By screening AlphaFold-modeled vitamin B6-dependent enzymes, we find that a metric based on catalytically favorable conformations at the enzyme active site performs best (AUROC Score=0.
View Article and Find Full Text PDFL-Ser supply in the central nervous system of mammals mostly relies on its endogenous biosynthesis by the phosphorylated pathway (PP). Defects in any of the three enzymes operating in the pathway result in a group of neurometabolic diseases collectively known as serine deficiency disorders (SDDs). Phosphoserine phosphatase (PSP) catalyzes the last, irreversible step of the PP.
View Article and Find Full Text PDFIn humans, the phosphorylated pathway (PP) converts the glycolytic intermediate D-3-phosphoglycerate (3-PG) into L-serine through the enzymes 3-phosphoglycerate dehydrogenase, phosphoserine aminotransferase (PSAT) and phosphoserine phosphatase. From the pathogenic point of view, the PP in the brain is particularly relevant, as genetic defects of any of the three enzymes are associated with a group of neurometabolic disorders known as serine deficiency disorders (SDDs). We recombinantly expressed and characterized eight variants of PSAT associated with SDDs and two non-SDD associated variants.
View Article and Find Full Text PDFDe novo l-serine biosynthesis in the mammalian astrocytes proceeds via a linear, three-step pathway (the phosphorylated pathway) catalysed by 3-phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase (PSAT) and phosphoserine phosphatase (PSP). The first reaction, catalysed by PHGDH and using the glycolytic intermediate 3-phosphoglycerate, is strongly shifted towards the reagents, and coupling to the following step by PSAT is required to push the equilibrium towards l-serine formation; the last step, catalysed by PSP, is virtually irreversible and inhibited by the final product l-serine. Very little is known about the regulation of the human phosphorylated pathway and the ability of the three enzymes to organise in a complex with potential regulatory functions.
View Article and Find Full Text PDFOrganisms from all kingdoms of life synthesize L-serine (L-Ser) from 3-phosphoglycerate through the phosphorylated pathway, a three-step diversion of glycolysis. Phosphoserine aminotransferase (PSAT) catalyzes the intermediate step, the pyridoxal 5'-phosphate-dependent transamination of 3-phosphohydroxypyruvate and L-glutamate to O-phosphoserine (OPS) and α-ketoglutarate. PSAT is particularly relevant in the central nervous system of mammals because L-Ser is the metabolic precursor of D-serine, cysteine, phospholipids, and nucleotides.
View Article and Find Full Text PDFTransaminases play key roles in central metabolism, transferring the amino group from a donor substrate to an acceptor. These enzymes can often act, with low efficiency, on compounds different from the preferred substrates. To understand what might have shaped the substrate specificity of this class of enzymes, we examined the reactivity of six human cytosolic transaminases towards amino acids whose main degradative pathways do not include any transamination.
View Article and Find Full Text PDFWe examined the ability of two human cytosolic transaminases, aspartate aminotransferase (GOT1) and alanine aminotransferase (GPT), to transform their preferred substrates whilst discriminating against similar metabolites. This offers an opportunity to survey our current understanding of enzyme selectivity and specificity in a biological context. Substrate selectivity can be quantitated based on the ratio of the / values for two alternative substrates (the 'discrimination index').
View Article and Find Full Text PDFDespite the remarkable morphological modifications that occurred in the thoracic limbs of bats, information about the brachial plexus in this group is still scarce. The present study aimed to describe the origin, structure, and distribution of these peripheral nerves in four Phyllostomidae species. Both antimeres of six Artibeus lituratus, five Desmodus rotundus, seven Glossophaga soricina, and five Phyllostomus hastatus-all adult males from the Adriano Lúcio Peracchi Collection (UFRRJ)-were dissected.
View Article and Find Full Text PDFPhosphoserine phosphatase (PSP) catalyzes the final step of de novo L-serine biosynthesis-the hydrolysis of phosphoserine to serine and inorganic phosphate-in humans, bacteria, and plants. In published works, the reaction is typically monitored through the discontinuous malachite green phosphate assay or, more rarely, through a continuous assay that couples phosphate release to the phosphorolysis of a chromogenic nucleoside by the enzyme purine nucleoside phosphorylase (PNP). These assays suffer from numerous drawbacks, and both rely on the detection of phosphate.
View Article and Find Full Text PDFThe human enzyme D-3-phosphoglycerate dehydrogenase (hPHGDH) catalyzes the reversible dehydrogenation of 3-phosphoglycerate (3PG) into 3-phosphohydroxypyruvate (PHP) using the NAD/NADH redox cofactor, the first step in the phosphorylated pathway producing L-serine. We focused on the full-length enzyme that was produced in fairly large amounts in cells; the effect of pH, temperature and ligands on hPHGDH activity was studied. The forward reaction was investigated on 3PG and alternative carboxylic acids by employing two coupled assays, both removing the product PHP; 3PG was by far the best substrate in the forward direction.
View Article and Find Full Text PDFN-acetylneuraminate (Neu5Ac), an abundant sugar present in glycans in vertebrates and some bacteria, can be used as an energy source by several prokaryotes, including Escherichia coli. In solution, more than 99% of Neu5Ac is in cyclic form (≈92% beta-anomer and ≈7% alpha-anomer), whereas <0.5% is in the open form.
View Article and Find Full Text PDFPhosphonates represent an important source of bioavailable phosphorus in certain environments. Accordingly, many microorganisms (particularly marine bacteria) possess catabolic pathways to degrade these molecules. One example is the widespread hydrolytic route for the breakdown of 2-aminoethylphosphonate (AEP, the most common biogenic phosphonate).
View Article and Find Full Text PDFAmong amniotes, reptiles and mammals are differently adapted to terrestrial life. It is generally appreciated that terrestrialization required adaptive changes of vertebrate metabolism, particularly in the mode of nitrogen excretion. However, the current paradigm is that metabolic adaptation to life on land did not involve synthesis of enzymatic pathways de novo, but rather repurposing of existing ones.
View Article and Find Full Text PDFHomologues of the putative dehydrogenase YjhC are found in operons involved in the metabolism of N-acetylneuraminate (Neu5Ac) or related compounds. We observed that purified recombinant YjhC forms Neu5Ac from two dehydrated forms of this compound, 2,7-anhydro-N-acetylneuraminate (2,7-AN) and 2-deoxy-2,3-didehydro-N-acetylneuraminate (2,3-EN) that are produced during the degradation of sialoconjugates by some sialidases. The conversion of 2,7-AN into Neu5Ac is reversible and reaches its equilibrium when the ratio of 2,7-AN to Neu5Ac is ≈1/6.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
April 2020
Human O-phosphoethanolamine phospho-lyase (hEtnppl; EC 4.2.3.
View Article and Find Full Text PDFDNAzymes (deoxyribozymes) are single-stranded DNA molecules endowed with catalytic activity, obtained by in vitro selection. In the past 25 years, dozens of DNAzymes have been identified and employed for applicative purposes, yet our knowledge of the structural and mechanistic basis of DNA catalysis remains very limited. The RNA-cleaving 8-17 DNAzyme, which depends on divalent metal ions for function, is possibly the most studied catalytic DNA in terms of mechanism.
View Article and Find Full Text PDFSteady-state enzyme kinetics typically relies on the measurement of 'initial rates', obtained when the substrate is not significantly consumed and the amount of product formed is negligible. Although initial rates are usually faster than those measured later in the reaction time-course, sometimes the speed of the reaction appears instead to increase with time, reaching a steady level only after an initial delay or 'lag phase'. This behavior needs to be interpreted by the experimentalists.
View Article and Find Full Text PDFThe substrate specificity of enzymes is bound to be imperfect, because of unavoidable physicochemical limits. In extant metabolic enzymes, furthermore, such limits are seldom approached, suggesting that the degree of specificity of these enzymes, on average, is much lower than could be attained. During biological evolution, the activity of a single enzyme with available alternative substrates may be preserved to a significant or even substantial level for different reasons - for example when the alternative reaction contributes to fitness, or when its undesirable products are nevertheless dispatched by metabolite repair enzymes.
View Article and Find Full Text PDFThe 8-17 deoxyribozyme (DNAzyme) is a catalytic DNA molecule capable of cleaving specific RNA substrates. The deoxyribozyme is activated by a wide variety of divalent metal ions, from Mg to Pb, with just a few exceptions. It is not clear if metal ions are directly involved in catalysis, or are required to attain an active conformation, or both.
View Article and Find Full Text PDFConjoined twinning is an embryological anomaly rarely reported in wild mammals and with only two previous records in Chiroptera. Here, we report a case of dicephalic parapagus conjoined twins in the Neotropical phyllostomid genus Artibeus. These twins are males and present separated heads and necks, but a conjoined trunk with an expanded upper thoracic region.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2017
The mammalian gene (nitrilase-like protein 1) encodes a protein that is highly conserved in eukaryotes and is thought to act as a tumor suppressor. Despite being ∼35% sequence identical to ω-amidase (Nit2), the Nit1 protein does not hydrolyze efficiently α-ketoglutaramate (a known physiological substrate of Nit2), and its actual enzymatic function has so far remained a puzzle. In the present study, we demonstrate that both the mammalian Nit1 and its yeast ortholog are amidases highly active toward deaminated glutathione (dGSH; i.
View Article and Find Full Text PDFA first survey of mite species that ectoparasitize bats in the states of Ceará and Mato Grosso was conducted. The specimens of bats and their mites were collected in areas of the Caatinga and Pantanal biomes. A total of 450 spinturnicids representing two genera and ten species was collected from 15 bat species in the Private Reserve of the Natural Patrimony Serra das Almas, Ceará State, Northeast Brazil and 138 spinturnicids represented by two genera and four species were found in seven bats species collected in Private Reserve of the Natural Patrimony Sesc Pantanal, Mato Grosso State, Central-Western Brazil.
View Article and Find Full Text PDF