Publications by authors named "Per-Erik Mellander"

Climate change is likely to exacerbate land to water phosphorus (P) transfers, causing a degradation of water quality in freshwater bodies in Northwestern Europe. Planning for mitigation measures requires an understanding of P loss processes under such conditions. This study assesses how climate induced changes to hydrology will likely influence the P transfer continuum in six contrasting river catchments using Irish national observatories as exemplars.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the transferability of a Bayesian Belief Network (BBN) model designed to simulate monthly stream phosphorus concentrations, applying it to three different catchments with varying hydrology and land use to assess its predictive capabilities.
  • - The original BBN model showed strong performance in accurately simulating phosphorus and flow values in poorly and moderately drained catchments, but struggled in groundwater-dominated areas; modifications, like incorporating additional groundwater inputs, led to improved model accuracy.
  • - A sensitivity analysis allowed the identification of unnecessary variables, ultimately resulting in an enhanced BBN model that demonstrates better generalization and application across diverse catchments.
View Article and Find Full Text PDF

Once released into the environment, herbicides can move through soil or surface water to streams and groundwater. Filters containing adsorbent media placed in fields may be an effective solution to herbicide loss in the environment. However, to date, no study has investigated the use of adsorbent materials in intervention systems at field-scale, nor has any study investigated their optimal configuration.

View Article and Find Full Text PDF

Detection of the agricultural acid herbicide MCPA (2-methyl-4-chlorophenoxyacetic acid) in drinking water source catchments is of growing concern, with economic and environmental implications for water utilities and wider ecosystem services. MCPA is poorly adsorbed to soil and highly mobile in water, but hydrological pathway processes are relatively unknown at the catchment scale and limited by coarse resolution data. This understanding is required to target mitigation measures and to provide a framework to monitor their effectiveness.

View Article and Find Full Text PDF

Water quality degradation can be caused by excessive agricultural nutrient transfers from fertilised soils exposed to wet weather. Mitigation measures within the EU Nitrates Directive aim to reduce this pressure by including 'closed' fertiliser spreading periods during wet months. For organic fertilisers such as slurry and manure, this closed period requires sufficient on-farm winter storage and good weather conditions to relieve storage at the end of the period.

View Article and Find Full Text PDF

The agri-food economy can be a significant driver of water quality pressures but the role of hydro-meteorological patterns in a changing climate also requires consideration. For this purpose, an assessment was made of a ten-year synchronous high temporal resolution water quality and hydro-meteorological dataset in Irish agricultural catchments. Changes occurring to rainfall intensity and soil temperature patterns were found to be important drivers of nutrient mobility in soils.

View Article and Find Full Text PDF

Colloid-facilitated transport can be important for preferential transfer of phosphorus (P) through the soil profile to groundwater and may in part explain elevated P concentrations in surface water during baseflow and particularly high flow conditions. To investigate the potential for colloidal P (P) mobilisation in soils, this study assessed the role of soil chemical properties and P fertilizer type on medium-sized soil P (200-450 nm) and its association with soil solution soluble bioavailable P (<450 nm). Hillslope soils from three agricultural catchments were sampled and untreated and treated (cattle slurry and synthetic fertilizer) subsamples were incubated.

View Article and Find Full Text PDF

Despite an improvement of water quality across Europe there are many pollution hotspots for both nitrates and PPPs, mainly due to agricultural activities. The BMPs and MMs to reduce pollution from agriculture are well known, and there are policy instruments in place to ensure drinking water standards, but the current approach has not been efficient enough. Within the H2020 Water Protect project the premise was that there is a need for a multi-actor, participatory approach to tackle the issue from a new angle, and to assess why the uptake of known BMPs and MMs was not better among farmers.

View Article and Find Full Text PDF

Clean water is a precious resource, and policies/programmes are implemented worldwide to protect and/or improve water quality. Faecal pollution can be a key contributor to water quality decline causing eutrophication through nutrient enrichment and pathogenic contamination. The robust sourcing of faecal pollutants is important to be able to target the appropriate sector and to engage managers.

View Article and Find Full Text PDF

Worldwide herbicide use in agriculture, whilst safeguarding yields also presents water quality issues. Controlling factors in agricultural catchments include both static and dynamic parameters. The present study investigated the occurrence of herbicides in streams and groundwater in two meso-scale catchments with contrasting flow controls and agricultural landuse (grassland and arable land).

View Article and Find Full Text PDF

The evolution of phosphorus (P) management decision support tools (DSTs) and systems (DSS), in support of food and environmental security has been most strongly affected in developed regions by national strategies (i) to optimize levels of plant available P in agricultural soils, and (ii) to mitigate P runoff to water bodies. In the United States, Western Europe, and New Zealand, combinations of regulatory and voluntary strategies, sometimes backed by economic incentives, have often been driven by reactive legislation to protect water bodies. Farmer-specific DSSs, either based on modeling of P transfer source and transport mechanisms, or when coupled with farm-specific information or local knowledge, have typically guided best practices, education, and implementation, yet applying DSSs in data poor catchments and/or where user adoption is poor hampers the effectiveness of these systems.

View Article and Find Full Text PDF

Freshwaters worldwide are affected by multiple stressors. Timing of inputs and pathways of delivery can influence the impact stressors have on freshwater communities. In particular, effects of point versus diffuse nutrient inputs on stream macroinvertebrates are poorly understood.

View Article and Find Full Text PDF

A comprehensive multiresidue method was developed and validated for the determination of 40 anthelmintic compounds, including 13 transformation products, in surface and groundwater samples at sub nanogram per litre (ng L) levels. Anthelmintic residues were extracted from unfiltered water samples using polymeric divinylbenzene solid phase extraction (SPE) cartridges, and eluted with methanol: acetone (50:50, /). Purified extracts were concentrated, filtered and injected for UHPLC-MS/MS determination.

View Article and Find Full Text PDF

Forecasting pesticide residues in soils in real time is essential for agronomic purposes, to manage phytotoxic effects, and in catchments to manage surface and ground water quality. This has not been possible in the past due to both modelling and measurement constraints. Here, the analytical transient probability distribution (pdf) of pesticide concentrations is derived.

View Article and Find Full Text PDF

Multiple stressors affect stream ecosystems worldwide and their interactions are of particular concern, with gaps existing in understanding stressor impacts on stream communities. Addressing these knowledge gaps will aid in targeting and designing of appropriate mitigation measures. In this study, the agricultural stressors fine sediment (ambient, low, medium, high), phosphorus (ambient, enriched) and nitrogen (ambient, enriched) were manipulated simultaneously in 64 streamside mesocosms to determine their individual and combined effects on the macroinvertebrate community (benthos and drift).

View Article and Find Full Text PDF

Management of agricultural diffuse pollution to water remains a challenge and is influenced by the complex interactions of rainfall-runoff pathways, soil and nutrient management, agricultural landscape heterogeneity and biogeochemical cycling in receiving water bodies. Amplified cycles of weather can also influence nutrient loss to water although they are less considered in policy reviews. Here, we present the development of climate-chemical indicators of diffuse pollution in highly monitored catchments in Western Europe.

View Article and Find Full Text PDF

This special issue of Ambio compiles a series of contributions made at the 8th International Phosphorus Workshop (IPW8), held in September 2016 in Rostock, Germany. The introducing overview article summarizes major published scientific findings in the time period from IPW7 (2015) until recently, including presentations from IPW8. The P issue was subdivided into four themes along the logical sequence of P utilization in production, environmental, and societal systems: (1) Sufficiency and efficiency of P utilization, especially in animal husbandry and crop production; (2) P recycling: technologies and product applications; (3) P fluxes and cycling in the environment; and (4) P governance.

View Article and Find Full Text PDF

Pesticide contamination of water is a potential environmental issue which may impact the quality of drinking water. The full extent of pesticide contamination is not fully understood due to complex fate pathways in the subsurface. Groundwater pesticide occurrence was investigated at seven agricultural sites in different hydrogeological settings to identify where pesticide occurrence dominated in temperate maritime climatic conditions.

View Article and Find Full Text PDF

Diffuse transfer of nitrogen (N) and phosphorus (P) in agricultural catchments is controlled by the mobilisation of sources and their delivery to receiving waters. While plot scale experiments have focused on mobilisation processes, many catchment scale studies have hitherto concentrated on the controls of dominant flow pathways on nutrient delivery. To place mobilisation and delivery at a catchment scale, this study investigated their relative influence on contrasting nitrate-N and soluble P concentrations and N:P ratios in two shallow groundwater fed catchments with different land use (grassland and arable) on the Atlantic seaboard of Europe.

View Article and Find Full Text PDF

Stormflow and baseflow phosphorus (P) concentrations and loads in rivers may exert different ecological pressures during different seasons. These pressures and subsequent impacts are important to disentangle in order to target and monitor the effectiveness of mitigation measures. This study investigated the influence of stormflow and baseflow P pressures on stream ecology in six contrasting agricultural catchments.

View Article and Find Full Text PDF

Managing incidental losses associated with liquid slurry applications during closed periods has significant cost and policy implications and the environmental data required to review such a measure are difficult to capture due to storm dependencies. Over four years (2010-2014) in five intensive agricultural catchments, this study used high-resolution total and total reactive phosphorus (TP and TRP), total oxidised nitrogen (TON) and suspended sediment (SS) concentrations with river discharge data to investigate the magnitude and timing of nutrient losses. A large dataset of storm events (defined as 90th percentile discharges), and associated flow-weighted mean (FWM) nutrient concentrations and TP/SS ratios, was used to indicate when losses were indicative of residual or incidental nutrient transfers.

View Article and Find Full Text PDF

Within agricultural watersheds suspended sediment-discharge hysteresis during storm events is commonly used to indicate dominant sediment sources and pathways. However, availability of high-resolution data, qualitative metrics, longevity of records, and simultaneous multiwatershed analyses has limited the efficacy of hysteresis as a sediment management tool. This two year study utilizes a quantitative hysteresis index from high-resolution suspended sediment and discharge data to assess fluctuations in sediment source location, delivery mechanisms and export efficiency in three intensively farmed watersheds during events over time.

View Article and Find Full Text PDF

The application of models to predict concentrations of faecal indicator organisms (FIOs) in environmental systems plays an important role for guiding decision-making associated with the management of microbial water quality. In recent years there has been an increasing demand by policy-makers for models to help inform FIO dynamics in order to prioritise efforts for environmental and human-health protection. However, given the limited evidence-base on which FIO models are built relative to other agricultural pollutants (e.

View Article and Find Full Text PDF

During the last 100 years the Ethiopian upper Blue Nile Basin (BNB) has undergone major changes in land use, and is now potentially facing changes in climate. Rainfall over BNB supplies over two-thirds of the water to the Nile and supports a large local population living mainly on subsistence agriculture. Regional food security is sensitive to both the amount and timing of rain and is already an important political challenge that will be further complicated if scenarios of climate change are realized.

View Article and Find Full Text PDF

The degree to which waters in a given watershed will be affected by nutrient export can be defined as that watershed's nutrient vulnerability. This study applied concepts of specific phosphorus (P) vulnerability to develop intrinsic groundwater vulnerability risk assessments in a 32 km(2) karst watershed (spring zone of contribution) in a relatively intensive agricultural landscape. To explain why emergent spring water was below an ecological impairment threshold, concepts of P attenuation potential were investigated along the nutrient transfer continuum based on soil P buffering, depth to bedrock, and retention within the aquifer.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session215pf06j05onlcjk0iecd7gffji65jbn): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once