A computational study is undertaken to provide a unified picture for various rearrangement reactions and hydrogen scrambling pathways of the toluene radical cation (1). The geometries are optimized with the BHandHLYP density functional, and the energies are computed with the ab initio CCSD(T) method, in conjunction with the 6-311+G(d,p) basis set. In particular, four channels have been located, which may account for hydrogen scrambling, as they are found to have overall barriers lower than the observed threshold for hydrogen dissociation.
View Article and Find Full Text PDFThree skeletal rearrangement channels for the norbornadiene (N*+) to the 1,3,5-cycloheptatriene (CHT*+) radical cation conversion, initialized by opening a bridgehead-methylene bond in N*+, are investigated using the quantum chemical B3LYP, MP2 and CCSD(T) methods in conjunction with the 6-311 +G(d,p) basis set. Two of the isomerizations proceed through the norcaradiene radical cation (NCD*+), either through a concerted path (N*+ - NCD*+), or by a stepwise mechanism via a stable intermediate (N*+ - I1 - NCD*+). At the CCSD(T)/6-311 +G(d,p)//B3LYP/6-311 +G(d,p) level, the lowest activation energy, 28.
View Article and Find Full Text PDFAn alternative skeletal rearrangement of the quadricyclane radical cation (Q*+) explains the side products formed in the one-electron oxidation to norbornadiene. First, the bicyclo[2.2.
View Article and Find Full Text PDF[structure: see text] A natural bond orbital analysis of the distonic bicyclo[2.2.1]hepta-2-ene-5-yl-7-ylium radical cation interprets its structure and radical character by a three-center two-electron bond between C2, C3, and C7 (a bishomoaromatic stabilization) and a singly occupied orbital on C5, n(5).
View Article and Find Full Text PDF