If scientific research on modifiable risk factors was more accessible to the general population there is a potential to prevent disease and promote health. Mobile applications can automatically combine individual characteristics and statistical models of health to present scientific information as individually tailored visuals, and thus there is untapped potential in incorporating scientific research into apps aimed at promoting healthier lifestyles. As a proof-of-concept, we develop a statistical model of the relationship between Self-rated-health (SRH) and lifestyle-related factors, and a simple app for conveying its effects through a visualisation that sets the individual as the frame of reference.
View Article and Find Full Text PDFObjective: This study aims to assess the ability of state-of-the-art machine learning algorithms to detect valvular heart disease (VHD) from digital heart sound recordings in a general population that includes asymptomatic cases and intermediate stages of disease progression.
Methods: We trained a recurrent neural network to predict murmurs from heart sound audio using annotated recordings collected with digital stethoscopes from four auscultation positions in 2,124 participants from the Tromsø7 study. The predicted murmurs were used to predict VHD as determined by echocardiography.