Publications by authors named "Per Mercke"

The gene encoding for amorpha-4,11-diene synthase from Artemisia annua was transformed into yeast Saccharomyces cerevisiae in two fundamentally different ways. First, the gene was subcloned into the galactose-inducible, high-copy number yeast expression vector pYeDP60 and used to transform the Saccharomyces cerevisiae strain CEN.PK113-5D.

View Article and Find Full Text PDF

Recombinant amorpha-4,11-diene synthase from Artemisia annua, expressed in Escherichia coli, was incubated with the deuterium-labeled farnesyl diphosphates, (1R)-[1-(2)H]FPP, (1S)-[1-(2)H]FPP, and [1,1-(2)H2]FPP. GC-MS analysis of amorpha-4,11-diene formed from the deuterated FPPs shows that the deuterium atoms are retained in the product. Furthermore, analysis of the MS-spectra obtained with the differently labeled substrate indicates that the H-1si-proton of FPP is transferred during the cyclization reaction to carbon 10 of amorphadiene while the H-1re-proton of FPP is retained on C-6 of the product.

View Article and Find Full Text PDF

Many plants have an indirect defense against herbivores by emitting volatiles that attract carnivorous enemies of the herbivores. In cucumber (Cucumis sativus) the production of carnivore attractants can be induced by herbivory or jasmonic acid spraying. From the leaves of cucumber plants with and without spider mite infestation, two subtractive cDNA libraries were made that were enriched in cDNA fragments up- or down-regulated by spider mite infestation.

View Article and Find Full Text PDF

A clone encoding farnesyl diphosphate synthase (FPPS) was obtained by PCR from a cDNA library made from young leaves of Artemisia annua. A cDNA clone encoding the tobacco epi-aristolochene synthase (eAS) was kindly supplied by J. Chappell (University of Kentucky, Lexington, KY, USA).

View Article and Find Full Text PDF