Degumming is an oil refinement process in which the naturally occurring phospholipids in crude vegetable oils are removed. Enzymatic degumming results in higher oil yield and more cost-efficient processing compared to traditional degumming processes using only water or acid. Phospholipase C hydrolyses phospholipids into diglycerides and phosphate groups during degumming.
View Article and Find Full Text PDFEnzymatic degumming is a well established process in vegetable oil refinement, resulting in higher oil yield and a more stable downstream processing compared to traditional degumming methods using acid and water. During the reaction, phospholipids in the oil are hydrolyzed to free fatty acids and lyso-phospholipids. The process is typically monitored by off-line laboratory measurements of the free fatty acid content in the oil, and there is a demand for an automated on-line monitoring strategy to increase both yield and understanding of the process dynamics.
View Article and Find Full Text PDFBiotechnol Appl Biochem
February 2022
Enzymatic biodiesel production has been at the forefront of biofuels research in recent decades because of the significant environmental advantages it offers, while having the potential to be as effective as conventional chemically catalyzed biodiesel production. However, the higher capital cost, longer reaction time, and sensitivity of enzyme processes have restricted their widespread industrial adoption so far. It is also posited that the lack of research to bring the biodiesel product into final specification has scuppered industrial confidence in the viability of the enzymatic process.
View Article and Find Full Text PDFFibrosis is often heterogeneously distributed, and classical biopsies do not reflect this. Noninvasive methods for renal fibrosis have been developed to follow chronic kidney diseases (CKD) and to monitor anti-fibrotic therapy. In this study, we combined two approaches to assess fibrosis regression following renal ischemia-reperfusion injury (IRI): magnetic resonance imaging (MRI) and noninvasive extracellular matrix (ECM) biomarkers.
View Article and Find Full Text PDFRenal ischemia-reperfusion injury (IRI) is one of the most common types of acute kidney injury. Spironolactone has shown promising kidney protective effects in renal IRI in rats. We investigated the hemodynamic and metabolic effects of spironolactone (100 mg/kg) administered immediately after 40 min unilateral kidney ischemia in rats.
View Article and Find Full Text PDFToday, there is a general lack of prognostic biomarkers for development of renal disease and in particular diabetic nephropathy. Increased glycolytic activity, lactate accumulation and altered mitochondrial oxygen utilization are hallmarks of diabetic kidney disease. Fumarate hydratase activity has been linked to mitochondrial dysfunction as well as activation of the hypoxia inducible factor, induction of apoptosis and necrosis.
View Article and Find Full Text PDFAcute kidney injury is a major clinical challenge affecting as many as 1 percent of all hospitalized patients. Currently it is not possible to accurately stratify and predict the outcome of the individual patient. Increasing evidence supports metabolic reprogramming as a potential target for new biomarkers.
View Article and Find Full Text PDFPurpose: Renal tubulointerstitial fibrosis is strongly linked to the progressive decline of renal function seen in chronic kidney disease. State-of-the-art noninvasive diagnostic modalities are currently unable to detect the earliest changes associated with the onset of fibrosis. This study was undertaken to evaluate the potential for detecting the earliest alterations in fibrogenesis using a biofluid-based method and metabolic hyperpolarized [1- C]pyruvate imaging.
View Article and Find Full Text PDFIn heart failure, myocardial overload causes vast metabolic changes that impair cardiac energy production and contribute to deterioration of contractile function. However, metabolic therapy is not used in heart failure care. We aimed to investigate the interplay between cardiac function and myocardial carbohydrate metabolism in a large animal heart failure model.
View Article and Find Full Text PDFPurpose: To assess the utility of Laplacian fitting to describe the differences in hyperpolarized [ C, N]urea T relaxation in ischemic and healthy rodent kidneys.
Methods: Six rats with unilateral renal ischemia were investigated. [ C, N]Urea T mapping was undertaken with a radial fast spin echo method, with subsequent postprocessing performed with regularized Laplacian fitting.
Aims: Early detection of heart failure is important for timely treatment. During the development of heart failure, adaptive intracellular metabolic processes that evolve prior to macro-anatomic remodelling, could provide an early signal of impending failure. We hypothesized that metabolic imaging with hyperpolarized magnetic resonance would detect the early development of heart failure before conventional echocardiography could reveal cardiac dysfunction.
View Article and Find Full Text PDFIntrarenal hypoxia develops within a few days after the onset of insulinopenic diabetes in an experimental animal model (ie, a model of type-1 diabetes). Although diabetes-induced hypoxia results in increased renal lactate formation, mitochondrial function is well maintained, a condition commonly referred to as pseudohypoxia. However, the metabolic effects of significantly elevated lactate levels remain unclear.
View Article and Find Full Text PDFDiabetic kidney disease (DKD) is associated with altered metabolic patterns, leading to increased lactate production even in the presence of sufficient oxygen supply. Studies have shown hyperglycemia to be an important factor in determining development of DKD. Here we explore the metabolic consequences of lactate dehydrogenase (LDH) inhibition exerted by the LDH inhibitor, oxamate, in the isolated rat renal proximal tubular cells (NRK-52E) under hyperglycemic conditions.
View Article and Find Full Text PDFBackground: Maintenance of kidney function in kidney allografts remains a challenge, as the allograft often progressively develops fibrosis after kidney transplantation. Fibrosis is caused by the accumulation of extracellular matrix proteins like type I and III collagen (COL I and III) that replace the functional tissue. We assessed the concentrations of a neo-epitope fragment of COL III generated by matrix metalloproteinase-9 cleavage (C3M) in two rat models resembling the ischaemic injury taking place following kidney transplantation.
View Article and Find Full Text PDFRenal urea handling is central to the urine concentrating mechanism, and as such the ability to image urea transport in the kidney is an important potential imaging biomarker for renal functional assessment. Glucagon levels associated with changes in dietary protein intake have been shown to influence renal urea handling; however, the exact mechanism has still to be fully understood. Here we investigate renal function and osmolite distribution using [ C, N] urea dynamics and Na distribution before and 60 min after glucagon infusion in six female rats.
View Article and Find Full Text PDFPurpose: Owing to its noninvasive nature, hyperpolarized MRI may improve delineation of myocardial metabolic derangement in heart disease. However, consistency may depend on the changeable nature of cardiac metabolism in relation to whole-body metabolic state. This study investigates the impact of feeding status on cardiac hyperpolarized MRI in a large animal model resembling human physiology.
View Article and Find Full Text PDFNumerous patient groups receive >1 medication and as such represent a potential point of improvement in today's healthcare setup, as the combined or cumulative effects are difficult to monitor in an individual patient. Here we show the ability to monitor the pharmacological effect of 2 classes of medications sequentially, namely, 2,4-dinitrophenol, a mitochondrial uncoupler, and dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, both targeting the oxygen-dependent energy metabolism. We show that although the 2 drugs target 2 different metabolic pathways connected ultimately to oxygen metabolism, we could distinguish the 2 in vivo by using hyperpolarized [1-C]pyruvate magnetic resonance imaging.
View Article and Find Full Text PDFHyperpolarised MRI with Dynamic Nuclear Polarisation overcomes the fundamental thermodynamic limitations of conventional magnetic resonance, and is translating to human studies with several early-phase clinical trials in progress including early reports that demonstrate the utility of the technique to observe lactate production in human brain cancer patients. Owing to the fundamental coupling of metabolism and tissue function, metabolic neuroimaging with hyperpolarised [1-C]pyruvate has the potential to be revolutionary in numerous neurological disorders (e.g.
View Article and Find Full Text PDFThis study investigated a simple method for calculating the single-kidney glomerular filtration rate (GFR) using dynamic hyperpolarized C-urea magnetic resonance (MR) renography. A retrospective data analysis was applied to renal hyperpolarized C-urea MR data acquired from control rats, prediabetic nephropathy rats, and rats in which 1 kidney was subjected to ischemia-reperfusion. Renal blood flow was determined by the model-free bolus differentiation method, GFR was determined using the Baumann-Rudin model method.
View Article and Find Full Text PDFPurpose: Anesthesia is necessary for most animal studies requiring invasive procedures. It is well documented that various types of anesthesia modulate a wide variety of important metabolic and functional processes in the body, and as such, represent a potential limitation in the study design. In the present study, we aimed to investigate the renal functional and metabolic consequences of 3 typical rodent anesthetics used in preclinical MRI: sevoflurane, inaction, and a mixture of fentanyl, fluanisone, and midazolam (FFM).
View Article and Find Full Text PDFPurpose: To investigate the correlation between renal ischemia and C-urea T relaxation rate in an acute kidney injury (AKI) rat model.
Methods: Six rats subjected to unilateral renal ischemia were investigated. Creatinine clearance, urine output, plasma creatinine as well as blood-urea nitrogen (BUN) values were acquired before and after the procedure.
While unilateral nephrectomy (UNx) is suggested to protect against ischemia-reperfusion injury (IRI) in the remaining kidney, the mechanisms underlying this protection remain to be elucidated. In this study, functional MRI was employed in a renal IRI rat model to reveal global and regional changes in renal filtration, perfusion, oxygenation and sodium handling, and microarray and pathway analyses were conducted to identify protective molecular mechanisms. Wistar rats were randomized to either UNx or sham UNx immediately prior to 37 minutes of unilateral renal artery clamping or sham operation under sevoflurane anesthesia.
View Article and Find Full Text PDFObjectives: The aim of this study was to determine if hyperpolarized [1,4-C]malate imaging could measure cardiomyocyte necrosis after myocardial infarction (MI).
Background: MI is defined by an acute burst of cellular necrosis and the subsequent cascade of structural and functional adaptations. Quantifying necrosis in the clinic after MI remains challenging.
Aims/hypothesis: Metformin inhibits hepatic mitochondrial glycerol phosphate dehydrogenase, thereby increasing cytosolic lactate and suppressing gluconeogenesis flux in the liver. This inhibition alters cytosolic and mitochondrial reduction-oxidation (redox) potential, which has been reported to protect organ function in several disease states including diabetes. In this study, we investigated the acute metabolic and functional changes induced by metformin in the kidneys of both healthy and insulinopenic Wistar rats used as a model of diabetes.
View Article and Find Full Text PDFSeveral parameters are important when choosing the most appropriate animal to model human obstetrics, including gestation period, number of fetuses per gestation and placental structure. The domesticated long-tailed chinchilla () is a well-suited and appropriate animal model of pregnancy that often will carry only one offspring and has a long gestation period of 105-115 days. Furthermore, the chinchilla placenta is of the haemomonochorial labyrinthine type and is therefore comparable to the human villous haemomonochorial placenta.
View Article and Find Full Text PDF