Protein Expr Purif
August 2010
Structural and biochemical analysis of proteins requires access to purified protein material. Modern molecular biology technologies facilitate straightforward molecular cloning and expression analysis of multiple protein constructs in parallel, and such approaches have proven very efficient to identify samples suitable for further analysis. A variety of information can be used to support rational design of protein constructs.
View Article and Find Full Text PDFBackground: Many biological networks show some characteristics of scale-free networks. Scale-free networks can evolve through preferential attachment where new nodes are preferentially attached to well connected nodes. In networks which have evolved through preferential attachment older nodes should have a higher average connectivity than younger nodes.
View Article and Find Full Text PDFBMC Bioinformatics
February 2004
Background: The two most common models for the evolution of metabolism are the patchwork evolution model, where enzymes are thought to diverge from broad to narrow substrate specificity, and the retrograde evolution model, according to which enzymes evolve in response to substrate depletion. Analysis of the distribution of homologous enzyme pairs in the metabolic network can shed light on the respective importance of the two models. We here investigate the evolution of the metabolism in E.
View Article and Find Full Text PDFWe have determined the solution structure of an albumin binding domain of protein G, a surface protein of group C and G streptococci. We find that it folds into a left handed three-helix bundle similar to the albumin binding domain of protein PAB from Peptostreptococcus magnus. The two domains share 59% sequence identity, are thermally very stable, and bind to the same site on human serum albumin.
View Article and Find Full Text PDF