We studied phosphorus (P) dynamics and its relation to urea dynamics in a wide range of dialyses by measuring predialysis and postdialysis serum P levels and all removed P and urea in dialysate during 455 hemodialyses. Dialyses were performed at different frequencies (range 3-6 treatments/wk); duration of dialysis (t) (range 80-560 minutes), varied blood and dialysate flow, and with high-flux and low-flux membranes. Kt/V-P, Kt/V-urea, weekly removal of P-and urea and removal volumes (Vr) and their relationships to varying dialyses, and predialysis concentrations, and protein catabolic rates were studied in linear and multiple regression analyses.
View Article and Find Full Text PDFPurpose: Glucose degradation products (GDPs) are precursors of advanced glycation end products (AGEs) that cause cellular damage and inflammation. We examined the content of GDPs in commercially available glucose-containing infusion fluids and investigated whether GDPs are found in patients' blood.
Methods: The content of GDPs was examined in infusion fluids by high-performance liquid chromatography (HPLC) analysis.
Objective: Glucose degradation products (GDPs) are important for the outcome of peritoneal dialysis (PD) treatment. The most cytotoxic GDP found in conventionally manufactured fluids, 3,4-dideoxyglucosone-3-ene (3,4-DGE), may in addition be recruited from 3-deoxyglucosone (3-DG). What happens with the GDPs in the fluid infused into patients during PD is not known.
View Article and Find Full Text PDFDaily home hemodialysis (HD) patients have a much superior survival rate than patients on regular, 3 times a week in-center HD or on peritoneal dialysis. Present-day HD machines are unsuitable for use at home by patients. We present our concept of the ideal home HD machine that allows daily short and long HD, does all the work preparing for and cleaning up after dialysis, has an intravenous infusion system controlled by the patient, needs no systemic anticoagulation, and teaches and interacts with the patient during dialysis.
View Article and Find Full Text PDFObjective: Glucose degradation products (GDPs) are important in the outcome of peritoneal dialysis (PD) treatment. 3,4-dideoxyglucosone-3-ene (3,4-DGE) is the most cytotoxic GDP found in conventionally manufactured fluids and may, in addition, be recruited from 3-deoxyglucosone (3-DG). It is not known what happens with those GDPs in patients during PD.
View Article and Find Full Text PDFBreakdown of glucose under physiological conditions gives rise to glucose degradation products (GDPs). GDPs are also formed during heat sterilization of glucose-containing peritoneal dialysis fluids (PD-fluids). In PD-fluids GDPs have been shown in many different in vitro assays to be responsible for adverse effects such as growth inhibition, and impaired leukocyte function and impaired wound healing of peritoneal mesothelial cells.
View Article and Find Full Text PDFObjective: The formation of glucose degradation products (GDPs) during sterilization of peritoneal dialysis fluids (PDFs) is one of the most important aspects of biocompatibility of glucose-containing PDFs. Producers of PDFs are thus trying to minimize the level of GDPs in their products. 3,4-Dideoxyglucosone-3-ene (3,4-DGE) has been identified as the most bioreactive GDP in PDFs.
View Article and Find Full Text PDFObjective: During heat sterilization and during prolonged storage, glucose in peritoneal dialysis fluids (PDF) degrades to carbonyl compounds commonly known as glucose degradation products (GDPs). Of these, 3,4-dideoxyglucosone-3-ene (3,4-DGE) is the most cytotoxic. It is an intermediate in degradation between 3-deoxyglucosone (3-DG) and 5-hydroxymethyl-2-furaldehyde (5-HMF).
View Article and Find Full Text PDFObjective: Glucose degradation products (GDPs) in peritoneal dialysis (PD) fluids are cytotoxic and affect the survival of the peritoneal membrane. One of the most reactive GDPs in PD fluids is 3,4-dideoxyglucosone-3-ene (3,4-DGE). 3,4-DGE has been reported as an intermediate between 3-deoxyglucosone (3-DG) and 5-hydroxymethyl furaldehyde (5-HMF) during degradation of glucose.
View Article and Find Full Text PDFObjective: Bioincompatible glucose degradation products (GDPs) develop during heat sterilization of peritoneal dialysis (PD) fluids. However, degradation may also take place during storage. Consequently, storage may add to the bioincompatibility caused by heat sterilization.
View Article and Find Full Text PDFBackground: Bioincompatible glucose degradation products (GDPs) in fluids for peritoneal dialysis (PD) develop during sterilization and storage. Their biological activity has successfully been monitored through the use of various in vitro methods but their molecular and chemical nature is less well understood. Many GDPs are highly reactive carbonyl compounds.
View Article and Find Full Text PDF