Synthetic polymers and gels capable of molecular recognition are very useful in designing novel intelligent biomaterials. In this article we review the recent progress in both theoretical and experimental studies toward making heteropolymers and gels with biomimetic properties, specifically in relation to protein recognition. Knowledge obtained from protein-folding studies sheds much light on our understanding of the heteropolymer behavior.
View Article and Find Full Text PDFThe main interest of this work was the investigation of the transport mechanisms of salmon calcitonin through the epithelial cell monolayer in the presence and absence of pH-sensitive hydrogel nanospheres composed of poly(methacrylic acid-grafted-poly(ethylene glycol)) (PMAA-g-EG). For this purpose, a gastrointestinal cell culture model, the Caco-2 cell line, was employed. The transport of other macromolecules such as fluorescein sodium, fluorescein isothiocyanate dextran, and (14)C-mannitol were also investigated and compared.
View Article and Find Full Text PDFThe objective of this study was to investigate the insulin incorporation and release properties of poly(methacrylic acid-g-ethylene glycol) P(MAA-g-EG) microparticles as a function of copolymer composition. These microparticles exhibited unique pH-responsive characteristics in which interpolymer complexes were formed in acidic media and dissociated in neutral/basic environments. The microparticles containing equimolar amounts of MAA and PEG were capable of efficient insulin loading using equilibrium partitioning (>90%).
View Article and Find Full Text PDFA series of nanospheres composed of temperature-sensitive poly(N-isopropylacrylamide), poly(ethylene glycol) 400 dimethacrylate, and poly(ethylene glycol) 1000 methacrylate was prepared by a thermally-initiated free radical dispersion polymerization method. Insulin was loaded into the nanoparticles by equilibrium partitioning. The loading capacity of insulin into the nanoparticles was 2.
View Article and Find Full Text PDFThe challenges faced to orally deliver therapeutic agents with unfavorable physicochemical properties, such as proteins, have been the primary motivation for the design and development of novel oral delivery systems that could circumvent biological barriers. In this work, we examined complexation-sensitive hydrogel nanospheres composed of poly[methacrylic acid-grafted-poly(ethylene glycol)] (P(MAA-g-EG)), on a model biological environment. For this purpose, a gastrointestinal cell culture model, the Caco-2 cell line, was employed to investigate the cytotoxic effects of the polymeric carrier and its effects on the cell monolayer integrity.
View Article and Find Full Text PDFPurpose: The objectives of this work were (i) to study and understand the physicochemical phenomena which are involved in the swelling and drug release from hydrophilic matrix tablets using the "sequential layer" model, and (ii) to predict the effect of the initial radius height and size of the tablets on the resulting drug release profiles.
Methods: Tablets were prepared by direct compression, using hydroxypropyl methylcellulose (HPMC) grades with different average molecular weights as matrix-forming polymers. The in vitro release of chlorpheniramine maleate, propranolol HCl, acetaminophen, theophylline and diclofenac sodium was studied in phosphate buffer (pH 7.
Hydrogels have been used primarily in the pharmaceutical field as carriers for delivery of various drugs, peptides and proteins. These systems have included stimuli-responsive gels that exhibit reversible swelling behavior and hence can show modulated release in response to external stimuli such as pH, temperature, ionic strength, electric field, or specific analyte concentration gradients. The focus of this article is to review molecular imprinting within hydrogels and discuss recent efforts on analyte-responsive intelligent gels, specifically suggesting the possibility of utilizing molecular imprinting strategies to impart analyte specificity and responsiveness within these systems.
View Article and Find Full Text PDFAnnu Rev Biomed Eng
January 2002
Hydrogels are cross-linked hydrophilic polymers that can imbibe water or biological fluids. Their biomedical and pharmaceutical applications include a very wide range of systems and processes that utilize several molecular design characteristics. This review discusses the molecular structure, dynamic behavior, and structural modifications of hydrogels as well as the various applications of these biohydrogels.
View Article and Find Full Text PDFIntroduction: The source of cells that participate in wound repair directly affects outcome. The extracellular matrix (ECM) and other acellular biomaterials have been used as therapeutic scaffolds for cell attachment and proliferation and as templates for tissue repair. The ECM consists of structural and functional proteins that influence cell attachment, gene expression patterns, and the differentiation of cells.
View Article and Find Full Text PDFRecent developments in the field of biomaterials are based on molecular design of polymers with improved surface and bulk properties. Novel techniques of surface modification by addition of tethered chains can lead to materials with the ability to recognize biological and pharmaceutical compounds. Methods based on molecular imprinting can increase the recognition capabilities of such systems.
View Article and Find Full Text PDFJ Biomed Mater Res
September 2001
The "living" radical polymerization with an iniferter was used to create micropatterned biomedical surfaces. Novel, photosensitive biomedical polymers were created by the incorporation of dithiocarbamate groups from iniferters. A second monomer layer was then irradiated onto the photosensitive polymer substrate created with the iniferter to form a copolymer.
View Article and Find Full Text PDFAdv Drug Deliv Rev
June 2001
The objective of this article is to review the spectrum of mathematical models that have been developed to describe drug release from hydroxypropyl methylcellulose (HPMC)-based pharmaceutical devices. The major advantages of these models are: (i) the elucidation of the underlying mass transport mechanisms; and (ii) the possibility to predict the effect of the device design parameters (e.g.
View Article and Find Full Text PDFUV free-radical polymerization techniques are often used to synthesize hydrogels for controlled release applications. Numerous techniques exist for immobilizing drugs or solutes in the gel. This work focuses on the entrapment of solute in a hydrogel by conducting a photopolymerization in the presence of the monomer and the solute.
View Article and Find Full Text PDFThe aim of this work was to study the release mechanisms of drugs having different solubility (buflomedil pyridoxalphosphate 65%, sodium diclofenac 3.1%, nitrofutantoin 0.02% w/v,) from hydroxypropyl methylcellulose (HPMC) matrices by concomitantly studying swelling, diffusion and erosion fronts movement and drug delivery.
View Article and Find Full Text PDFPurpose: The aims of this study were (i) to elucidate the transport mechanisms involved in drug release from hydrophilic matrices; and (ii) to develop an improved mathematical model allowing quantitative predictions of the resulting release kinetics.
Methods: Our previously presented model has been substantially modified, by adding: (i) inhomogeneous swelling; (ii) poorly water-soluble drugs; and (iii) high initial drug loadings. The validity of the improved model has been tested experimentally using hydroxypropyl methylcellulose (HPMC)-matrices, containing either a poorly or a freely water-soluble drug (theophylline or chlorpheniramine maleate) at various initial loadings in phosphate buffer pH 7.
The aim of this study was to develop new multi-layer matrix tablets to achieve bimodal drug release profiles (fast release/slow release/fast release). Hydroxypropyl methylcellulose acetate succinate (HPMCAS, type MF) was chosen as a matrix former, because it is water-insoluble at low, and water-soluble at high pH values. Studies focused on the elucidation of the drug release mechanisms from HPMCAS-MF:drug tablets.
View Article and Find Full Text PDFThe aim of this study was to develop methods for the design of hydroxypropyl methylcellulose (HPMC) tablets with specified drug profiles. This was achieved by the use of a mathematical model developed to predict the release kinetics of water-soluble drugs from HPMC matrices. The required model parameters were determined experimentally for propranolol HCl and chlorpheniramine maleate in 0.
View Article and Find Full Text PDFPoly(diethylaminoethyl-g-ethylene glycol) microparticles were prepared by suspension polymerization of diethylaminoethyl methacrylate, poly(ethylene glycol) monomethacrylate and the crosslinking agent tetra(ethylene glycol) dimethacrylate in silicone oil using redox initiators. Particles of different sizes, crosslinking ratios and graft molecular weights were prepared. The changes in the swelling of the particles were studied as the pH was changed between 3.
View Article and Find Full Text PDFPharm Sci Technol Today
June 2000
The majority of oral drug delivery systems (DDS) are matrix-based. Swellable matrices are monolithic systems prepared by compression of a powdered mixture of a hydrophilic polymer and a drug. Their success is linked to the established tabletting technology of manufacturing.
View Article and Find Full Text PDFThe availability of large molecular weight protein- and peptide-based drugs due to the recent advances in the field of molecular biology has given us new ways to treat a number of diseases. Synthetic hydrogels offer a possibly effective and convenient way to administer these compounds. Hydrogels are hydrophilic, three-dimensional networks, which are able to imbibe large amounts of water or biological fluids, and thus resemble, to a large extent, a biological tissue.
View Article and Find Full Text PDFThe commercial availability of peptides and proteins and their advantages as therapeutic agents have been the basis for tremendous efforts in designing delivery systems for such agents. The protection of these agents from biological fluids and physiological interactions is crucial for the treatment efficacy. One such agent is salmon calcitonin, a 32 amino-acid polypeptide hormone used in the treatment of bone diseases such as Paget's disease, hypercalcemia and osteoporosis.
View Article and Find Full Text PDFGlucose oxidase and catalase were immobilized on poly(diethylaminoethyl methacrylate-g-ethylene glycol) gels by copolymerization of the constituent monomers and the functionalized enzyme solutions. The hydrogels were prepared in the form of discs and microparticles. The amount and the activity of enzymes immobilized in the matrix were determined.
View Article and Find Full Text PDF