The combination of isoniazid (INH) and rifampicin (RIF) is indicated for the treatment maintenance phase of tuberculosis (TB) in adults and children. In Brazil, there is no current reference listed drug for this indication in children. Farmanguinhos has undertaken the development of an age-appropriate dispersible tablet to be taken with water for all age groups from birth to adolescence.
View Article and Find Full Text PDFThis report summarizes the proceedings for Day 3 of the workshop titled "". This day focused on the current and future drug product quality applications of PBBM from the innovator and generic industries as well as the regulatory agencies perspectives. The presentations, which included several case studies, covered the applications of PBBM in generic drug product development, applications of virtual bioequivalence trials to support formulation bridging and the utility of absorption modeling in clinical pharmacology assessments.
View Article and Find Full Text PDFThe proceedings from the 30th August 2023 (Day 2) of the workshop "Physiologically Based Biopharmaceutics Models (PBBM) Best Practices for Drug Product Quality: Regulatory and Industry Perspectives" are provided herein. Day 2 covered PBBM case studies from six regulatory authorities which provided considerations for model verification, validation, and application based on the context of use (COU) of the model. PBBM case studies to define critical material attribute (CMA) specification settings, such as active pharmaceutical ingredient (API) particle size distributions (PSDs) were shared.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
October 2024
Omaveloxolone is a nuclear factor (erythroid-derived 2)-like 2 activator approved in the United States and the European Union for the treatment of patients with Friedreich ataxia aged ≥16 years, with a recommended dosage of 150 mg orally once daily on an empty stomach. The effect of the US Food and Drug Administration (FDA) high-fat breakfast on the pharmacokinetic profile of omaveloxolone observed in study 408-C-1703 (NCT03664453) deviated from the usual linear correlation between fed/fasted maximum plasma concentration (C) and area under the concentration-time curve (AUC) ratios reported for various oral drugs across 323 food effect studies. Here, physiologically based biopharmaceutics modeling (PBBM) was implemented to predict and explain the effect of the FDA high-fat breakfast on a 150-mg dose of omaveloxolone.
View Article and Find Full Text PDFThis Article shares the proceedings from the August 29th, 2023 (day 1) workshop "Physiologically Based Biopharmaceutics Modeling (PBBM) Best Practices for Drug Product Quality: Regulatory and Industry Perspectives". The focus of the day was on model parametrization; regulatory authorities from Canada, the USA, Sweden, Belgium, and Norway presented their views on PBBM case studies submitted by industry members of the IQ consortium. The presentations shared key questions raised by regulators during the mock exercise, regarding the PBBM input parameters and their justification.
View Article and Find Full Text PDFThis work shows the utilization of a physiologically based biopharmaceutics model (PBBM) to mechanistically explain the impact of diverse food types on the pharmacokinetics (PK) of isoniazid (INH) and acetyl-isoniazid (Ac-INH). The model was established and validated using published PK profiles for INH along with a combination of measured and predicted values for the physico-chemical and biopharmaceutical propertied of INH and Ac-INH. A dedicated ontogeny model was developed for N-acetyltransferase 2 (NAT2) in human integrating Michaelis Menten parameters for this enzyme in the physiologically based pharmacokinetic (PBPK) model tissues and in the gut, to explain the pre-systemic and systemic metabolism of INH across different acetylator types.
View Article and Find Full Text PDFPhysiologically based biopharmaceutics modeling (PBBM) is used to elevate drug product quality by providing a more accurate and holistic understanding of how drugs interact with the human body. These models are based on the integration of physiological, pharmacological, and pharmaceutical data to simulate and predict drug behavior in vivo. Effective utilization of PBBM requires a consistent approach to model development, verification, validation, and application.
View Article and Find Full Text PDFPurpose: To construct a detailed mechanistic and physiologically based biopharmaceutics model capable of predicting 1) device-formulation-tissue interaction during the injection process and 2) binding, degradation, local distribution, diffusion, and drug absorption, following subcutaneous injection. This paper is part of a series and focusses on the first aspect.
Methods: A mathematical model, SubQ-Sim, was developed incorporating the details of the various substructures within the subcutaneous environment together with the calculation of dynamic drug disposition towards the lymph ducts and venous capillaries.
Current regulatory guidelines on drug-food interactions recommend an early assessment of food effect to inform clinical dosing instructions, as well as a pivotal food effect study on the to-be-marketed formulation if different from that used in earlier trials. Study waivers are currently only granted for BCS class 1 drugs. Thus, repeated food effect studies are prevalent in clinical development, with the initial evaluation conducted as early as the first-in-human studies.
View Article and Find Full Text PDFAcalabrutinib maleate tablets correspond to an improved formulation compared to acalabrutinib capsules as they can be dosed with and without acid reducing agents and therefore benefit more cancer patients. The dissolution specification for the drug product was determined using all the information available on the drug safety, efficacy, and in vitro performance. In addition, a physiologically based biopharmaceutics model was developed for acalabrutinib maleate tablets on the back of a previously published model for acalabrutinib capsules to establish that the proposed drug product dissolution specification would ensure safe and effective products for all patients including those under acid reducing agent treatment.
View Article and Find Full Text PDFAcalabrutinib is a Bruton tyrosine kinase (BTK) inhibitor approved to treat adults with chronic lymphocytic leukemia, small lymphocytic lymphoma, or previously treated mantle cell lymphoma. As the bioavailability of the acalabrutinib capsule (AC) depends on gastric pH for solubility and is impaired by acid-suppressing therapies, coadministration with proton-pump inhibitors (PPIs) is not recommended. Three studies in healthy subjects (N = 30, N = 66, N = 20) evaluated the pharmacokinetics (PKs), pharmacodynamics (PDs), safety, and tolerability of acalabrutinib maleate tablet (AT) formulated with pH-independent release.
View Article and Find Full Text PDFObjective: A physiologically based biopharmaceutics model (PBBM) was developed to mechanistically investigate the effect of formulation and food on selumetinib pharmacokinetics.
Methods: Selumetinib is presented as a hydrogen sulfate salt, and in vitro and in vivo data were used to verify the precipitation rate to apply to simulations. Dissolution profiles observed for capsules and granules were used to derive product-particle size distributions for model input.
A webinar series that was organised by the Academy of Pharmaceutical Sciences Biopharmaceutics focus group in 2021 focused on the challenges of developing clinically relevant dissolution specifications (CRDSs) for oral drug products. Industrial scientists, together with regulatory and academic scientists, came together through a series of six webinars, to discuss progress in the field, emerging trends, and areas for continued collaboration and harmonisation. Each webinar also hosted a Q&A session where participants could discuss the shared topic and information.
View Article and Find Full Text PDFThe use of physiologically based pharmacokinetic (PBPK) modeling to support the drug product quality attributes, also known as physiologically based biopharmaceutics modeling (PBBM) is an evolving field and the interest in using PBBM is increasing. The US-FDA has emphasized on the use of patient centric quality standards and clinically relevant drug product specifications over the years. Establishing an in vitro in vivo link is an important step towards achieving the goal of patient centric quality standard.
View Article and Find Full Text PDFAcalabrutinib, a selective Bruton's tyrosine kinase inhibitor, is a biopharmaceutics classification system class II drug. The aim of this study was to develop a physiologically based pharmacokinetic (PBPK) model to mechanistically describe absorption of immediate release capsule formulation of acalabrutinib in humans. Integration of in vitro biorelevant measurements, dissolution studies and in silico modelling provided clinically relevant inputs for the mechanistic absorption PBPK model.
View Article and Find Full Text PDFDrug absorption following oral administration is determined by complex and dynamic interactions between gastrointestinal (GI) physiology, the drug, and its formulation. Since many of these interactions are not fully understood, the COST action on "Understanding Gastrointestinal Absorption-related Processes (UNGAP)" was initiated in 2017, with the aim to improve the current comprehension of intestinal drug absorption and foster future developments in this field. In this regard, in vivo techniques used for the characterization of human GI physiology and the intraluminal behavior of orally administered dosage forms in the GI tract are fundamental to gaining deeper mechanistic understanding of the interplay between human GI physiology and drug product performance.
View Article and Find Full Text PDFDrug product dissolution is a key input to Physiologically Based Biopharmaceutics Models (PBBM) to be able to predict in vivo dissolution. The integration of product dissolution in PBBMs for immediate release drug products should be mechanistic, i.e.
View Article and Find Full Text PDFFood can alter drug absorption and impact safety and efficacy. Besides conducting clinical studies, in vitro approaches such as biorelevant solubility and dissolution testing and in vivo dog studies are typical approaches to estimate a drug's food effect. The use of physiologically based pharmacokinetic models has gained importance and is nowadays a standard tool for food effect predictions at preclinical and clinical stages in the pharmaceutical industry.
View Article and Find Full Text PDFOver the last 10 years, 40% of approved oral drugs exhibited a significant effect of food on their pharmacokinetics (PK) and currently the only method to characterize the effect of food on drug absorption, which is recognized by the authorities, is to conduct a clinical evaluation. Within the pharmaceutical industry, there is a significant effort to predict the mechanism and clinical relevance of a food effect. Physiologically based pharmacokinetic (PBPK) models combining both drug-specific and physiology-specific data have been used to predict the effect of food on absorption and to reveal the underlying mechanisms.
View Article and Find Full Text PDFAn Erratum to this paper has been published: https://doi.org/10.1208/s12248-020-00535-z.
View Article and Find Full Text PDFThis report summarizes the proceedings for Day 3 of the workshop titled "Current State and Future Expectations of Translational Modeling Strategies toSupportDrug Product Development, Manufacturing Changes and Controls". From a drug product quality perspective, patient-centric product development necessitates the development of clinically relevant drug product specifications (CRDPS). In this regard, Physiologically Based Biopharmaceutics modeling (PBBM) is a viable tool to establish links between in-vitro to in-vivo data, and support with establishing CRDPS.
View Article and Find Full Text PDFThis workshop report summarizes the proceedings of Day 2 of a three-day workshop on "Current State and Future Expectations of Translational Modeling Strategies toSupportDrug Product Development, Manufacturing Changes and Controls". From a drug product quality perspective, physiologically based biopharmaceutics modeling (PBBM) is a tool to link variations in the drug product quality attributes to in vivo outcomes enabling the establishment of clinically relevant drug product specifications (CRDPS). Day 2 of the workshop focused on best practices in developing, verifying and validating PBBM.
View Article and Find Full Text PDF