Background: Human milk is recommended for very preterm infants, but its variable macronutrient content may contribute to undernutrition during a critical period in development. We hypothesize that individually targeted human milk fortification is more effective in meeting macronutrient requirements than the current standard of care.
Methods: We designed a single-center randomized, controlled trial enrolling 130 infants born < 31 completed weeks' gestation.
Background: Liquid human milk fortifiers are used commonly in neonatal intensive care. Use of an acidified HMF (A-HMF) is associated with transient metabolic acidosis, but whether growth outcomes differ between infants fed A-HMF vs nonacidified HMF (NA-HMF) remains unknown.
Methods: Retrospective cohort study of 255 infants born at <33 weeks' gestation and ≤1500 g who were receiving ≥75% fortified human milk on day of life 14, in a level III neonatal intensive care unit (NICU) from May 2015 to December 2018.
The variable macronutrient content of human milk may contribute to growth deficits among preterm infants in the neonatal intensive care unit (NICU). In a longitudinal study of 37 infants < 32 weeks gestation, we aimed to (1) determine the between-infant variation in macronutrient intake from human milk and (2) examine associations of macronutrient intake with growth outcomes. We analyzed 1626 human milk samples (median, 43 samples/infant) with mid infrared spectroscopy.
View Article and Find Full Text PDFObjective: To assess the association of very preterm infants' brain size at term-equivalent age with physical growth from birth to term and body composition at term.
Study Design: We studied 62 infants born at <33 weeks of gestation. At birth and term, we measured weight and length and calculated body mass index.
Our understanding of the dynamics of ion collisional energy loss in a plasma is still not complete, in part due to the difficulty and lack of high-quality experimental measurements. These measurements are crucial to benchmark existing models. Here, we show that such a measurement is possible using high-flux proton beams accelerated by high intensity short pulse lasers, where there is a high number of particles in a picosecond pulse, which is ideal for measurements in quickly expanding plasmas.
View Article and Find Full Text PDFWe investigate the formation of a laser-produced magnetized jet under conditions of a varying mass ejection rate and a varying divergence of the ejected plasma flow. This is done by irradiating a solid target placed in a 20 T magnetic field with, first, a collinear precursor laser pulse (10^{12} W/cm^{2}) and, then, a main pulse (10^{13} W/cm^{2}) arriving 9-19 ns later. Varying the time delay between the two pulses is found to control the divergence of the expanding plasma, which is shown to increase the strength of and heating in the conical shock that is responsible for jet collimation.
View Article and Find Full Text PDFA new type of proton acceleration stemming from large-scale gradients, low-density targets, irradiated by an intense near-infrared laser is observed. The produced protons are characterized by high-energies (with a broad spectrum), are emitted in a very directional manner, and the process is associated to relaxed laser (no need for high-contrast) and target (no need for ultra-thin or expensive targets) constraints. As such, this process appears quite effective compared to the standard and commonly used Target Normal Sheath Acceleration technique (TNSA), or more exploratory mechanisms like Radiation Pressure Acceleration (RPA).
View Article and Find Full Text PDFAccretion dynamics in the formation of young stars is still a matter of debate because of limitations in observations and modeling. Through scaled laboratory experiments of collimated plasma accretion onto a solid in the presence of a magnetic field, we open a first window on this phenomenon by tracking, with spatial and temporal resolution, the dynamics of the system and simultaneously measuring multiband emissions. We observe in these experiments that matter, upon impact, is ejected laterally from the solid surface and then refocused by the magnetic field toward the incoming stream.
View Article and Find Full Text PDFWe have investigated proton acceleration in the forward direction from a near-critical density hydrogen gas jet target irradiated by a high intensity (10 W/cm), short-pulse (5 ps) laser with wavelength of 1.054 μm. We observed the signature of the Collisionless Shock Acceleration mechanism, namely quasi-monoenergetic proton beams with small divergence in addition to the more commonly observed electron-sheath driven proton acceleration.
View Article and Find Full Text PDFWe report the successful demonstration of a hybrid system that combines pulsed laser deposition (PLD) and magnetron sputtering (MS) to deposit high quality thin films. The PLD and MS simultaneously use the same target, leading to an enhanced deposition rate. The performance of this technique is demonstrated through the deposition of titanium dioxide and bismuth-based perovskite oxide BiFeCrO (BFCO) thin films on Si(100) and LaAlO (LAO) (100).
View Article and Find Full Text PDFUltra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g.
View Article and Find Full Text PDFThe intricate spatial and energy distribution of magnetic fields, self-generated during high power laser irradiation (at Iλ^{2}∼10^{13}-10^{14} W.cm^{-2}.μm^{2}) of a solid target, and of the heat-carrying electron currents, is studied in inertial confinement fusion (ICF) relevant conditions.
View Article and Find Full Text PDFAlthough bipolar jets are seen emerging from a wide variety of astrophysical systems, the issue of their formation and morphology beyond their launching is still under study. Our scaled laboratory experiments, representative of young stellar object outflows, reveal that stable and narrow collimation of the entire flow can result from the presence of a poloidal magnetic field whose strength is consistent with observations. The laboratory plasma becomes focused with an interior cavity.
View Article and Find Full Text PDFWe report the imaging of tendon with Interferometric Second Harmonic Generation microscopy. We observe that the noncentrosymmetric structural organization can be maintained along the fibrillar axis over more than 150 μm, while in the transverse direction it is ∼1-15 μm. Those results are explained by modeling tendon as a heterogeneous distribution of noncentrosymmetric nano-cylinders (collagen fibrils) oriented along the fibrillar axis.
View Article and Find Full Text PDFThe production of strongly magnetized laser plasmas, of interest for laboratory astrophysics and inertial confinement fusion studies, is presented. This is achieved by coupling a 16 kV pulse-power system. This is achieved by coupling a 16 kV pulse-power system, which generates a magnetic field by means of a split coil, with the ELFIE laser facility at Ecole Polytechnique.
View Article and Find Full Text PDFThe generation of astrophysically relevant jets, from magnetically collimated, laser-produced plasmas, is investigated through three-dimensional, magnetohydrodynamic simulations. We show that for laser intensities I∼10(12)-10(14) W cm(-2), a magnetic field in excess of ∼0.1 MG, can collimate the plasma plume into a prolate cavity bounded by a shock envelope with a standing conical shock at its tip, which recollimates the flow into a supermagnetosonic jet beam.
View Article and Find Full Text PDFWe have analyzed the coupling of ultraintense lasers (at ∼2×10{19} W/cm{2}) with solid foils of limited transverse extent (∼10 s of μm) by monitoring the electrons and ions emitted from the target. We observe that reducing the target surface area allows electrons at the target surface to be reflected from the target edges during or shortly after the laser pulse. This transverse refluxing can maintain a hotter, denser and more homogeneous electron sheath around the target for a longer time.
View Article and Find Full Text PDFMolecular structure is usually determined by measuring the diffraction pattern the molecule impresses on x-rays or electrons. We used a laser field to extract electrons from the molecule itself, accelerate them, and in some cases force them to recollide with and diffract from the parent ion, all within a fraction of a laser period. Here, we show that the momentum distribution of the extracted electron carries the fingerprint of the highest occupied molecular orbital, whereas the elastically scattered electrons reveal the position of the nuclear components of the molecule.
View Article and Find Full Text PDFHigh harmonic emission in isotropic gases is polarized in the same direction as the incident laser polarization. Laser-induced molecular alignment allows us to break the symmetry of the gas medium. By using aligned molecules in high harmonic generation experiments, we show that the polarization of the extreme ultraviolet emission depends strongly on the molecular alignment and the orbital structure.
View Article and Find Full Text PDFA novel interferometry technique is presented by which, in one shot, one can measure phase changes with a resolution of tens of femtoseconds while extending the measurement over picoseconds or even longer. The method is based on spectral (frequency-domain) interferometry with a pair of linearly chirped pules as probes. With this technique we obtained single-shot measurements of the rapid phase changes induced by optical field ionization of air.
View Article and Find Full Text PDFPhys Rev Lett
February 2005
The comparative efficiency and beam characteristics of high-energy ions generated by high-intensity short-pulse lasers (approximately 1-6 x 10(19) W/cm2) from both the front and rear surfaces of thin metal foils have been measured under identical conditions. Using direct beam measurements and nuclear activation techniques, we find that rear-surface acceleration produces higher energy particles with smaller divergence and a higher efficiency than front-surface acceleration. Our observations are well reproduced by realistic particle-in-cell simulations, and we predict optimal criteria for future applications.
View Article and Find Full Text PDFSingle-electron wavefunctions, or orbitals, are the mathematical constructs used to describe the multi-electron wavefunction of molecules. Because the highest-lying orbitals are responsible for chemical properties, they are of particular interest. To observe these orbitals change as bonds are formed and broken is to observe the essence of chemistry.
View Article and Find Full Text PDFDynamic wave-front correction is applied before each shot on a 100-TW, 30-J/300-fs high-power laser facility by use of an adaptive-optics system. This system allows us to increase the repetition rate of high-energy lasers while maintaining excellent and constant beam focusability with a Strehl ratio of >0.75 despite the amplifiers' not being in thermal equilibrium.
View Article and Find Full Text PDFThe laminarity of high-current multi-MeV proton beams produced by irradiating thin metallic foils with ultraintense lasers has been measured. For proton energies >10 MeV, the transverse and longitudinal emittance are, respectively, <0.004 mm mrad and <10(-4) eV s, i.
View Article and Find Full Text PDFPhys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics
November 2000
Fast electron generation and propagation were studied in the interaction of a green laser with solids. The experiment, carried out with the LULI TW laser (350 fs, 15 J), used K(alpha) emission from buried fluorescent layers to measure electron transport. Results for conductors (Al) and insulators (plastic) are compared with simulations: in plastic, inhibition in the propagation of fast electrons is observed, due to electric fields which become the dominant factor in electron transport.
View Article and Find Full Text PDF