Publications by authors named "Pepijn Veefkind"

Nitrogen dioxide (NO) is an important contributor to air pollution and can adversely affect human health. A decrease in NO concentrations has been reported as a result of lockdown measures to reduce the spread of COVID-19. Questions remain, however, regarding the relationship of satellite-derived atmospheric column NO data with health-relevant ambient ground-level concentrations, and the representativeness of limited ground-based monitoring data for global assessment.

View Article and Find Full Text PDF

Southeast Australia experienced intensive and geographically extensive wildfires during the 2019-2020 summer season. The fires released substantial amounts of carbon dioxide into the atmosphere. However, existing emission estimates based on fire inventories are uncertain, and vary by up to a factor of four for this event.

View Article and Find Full Text PDF

Airborne and ground-based Pandora spectrometer NO column measurements were collected during the 2018 Long Island Sound Tropospheric Ozone Study (LISTOS) in the New York City/Long Island Sound region, which coincided with early observations from the Sentinel-5P TROPOspheric Monitoring Instrument (TROPOMI) instrument. Both airborne- and ground-based measurements are used to evaluate the TROPOMI NO Tropospheric Vertical Column (TrVC) product v1.2 in this region, which has high spatial and temporal heterogeneity in NO.

View Article and Find Full Text PDF

China's policy interventions to reduce the spread of the coronavirus disease 2019 have environmental and economic impacts. Tropospheric nitrogen dioxide indicates economic activities, as nitrogen dioxide is primarily emitted from fossil fuel consumption. Satellite measurements show a 48% drop in tropospheric nitrogen dioxide vertical column densities from the 20 days averaged before the 2020 Lunar New Year to the 20 days averaged after.

View Article and Find Full Text PDF

Production of oil and natural gas in North America is at an all-time high due to the development and use of horizontal drilling and hydraulic fracturing. Methane emissions associated with this industrial activity are a concern because of the contribution to climate radiative forcing. We present new measurements from the space-based TROPOspheric Monitoring Instrument (TROPOMI) launched in 2017 that show methane enhancements over production regions in the United States.

View Article and Find Full Text PDF

Unlabelled: TROPOMI, on-board the Sentinel-5 Precursor satellite is a nadir-viewing spectrometer measuring reflected sunlight in the ultraviolet, visible, near-infrared, and shortwave infrared spectral range. From these spectra several important air quality and climate-related atmospheric constituents are retrieved at an unprecedented high spatial resolution, including nitrogen dioxide (NO). We present the first retrievals of TROPOMI NO over the Canadian Oil Sands, contrasting them with observations from the OMI satellite instrument, and demonstrate its ability to resolve individual plumes and highlight its potential for deriving emissions from individual mining facilities.

View Article and Find Full Text PDF

The Dutch-Finnish Ozone Monitoring Instrument (OMI) is an imaging spectrograph flying on NASA's EOS Aura satellite since July 15, 2004. OMI is primarily used to map trace gas concentrations in the Earth's atmosphere, obtaining mid-resolution (0.4-0.

View Article and Find Full Text PDF

Chemical ozone destruction occurs over both polar regions in local winter-spring. In the Antarctic, essentially complete removal of lower-stratospheric ozone currently results in an ozone hole every year, whereas in the Arctic, ozone loss is highly variable and has until now been much more limited. Here we demonstrate that chemical ozone destruction over the Arctic in early 2011 was--for the first time in the observational record--comparable to that in the Antarctic ozone hole.

View Article and Find Full Text PDF