Publications by authors named "Pepe Cana Quijada"

Membrane contact sites (MCSs) are fundamental for intracellular communication, but their role in intercellular communication remains unexplored. We show that in plants, plasmodesmata communication bridges function as atypical endoplasmic reticulum (ER)-plasma membrane (PM) tubular MCSs, operating at cell-cell interfaces. Similar to other MCSs, ER-PM apposition is controlled by a protein-lipid tethering complex, but uniquely, this serves intercellular communication.

View Article and Find Full Text PDF

Jasmonates (JAs) are phytohormones that finely regulate critical biological processes, including plant development and defense. JASMONATE ZIM-DOMAIN (JAZ) proteins are crucial transcriptional regulators that keep JA-responsive genes in a repressed state. In the presence of JA-Ile, JAZ repressors are ubiquitinated and targeted for degradation by the ubiquitin/proteasome system, allowing the activation of downstream transcription factors and, consequently, the induction of JA-responsive genes.

View Article and Find Full Text PDF

Geminiviruses (viruses with circular, single-stranded DNA genomes) are one of the major groups of plant viruses causing severe economic problems for agriculture worldwide. The control of these pathogens has become a priority to maintain the production of important crops, including cotton, maize, cassava, and other vegetables. Obtaining resistant plants is the most powerful strategy and a key factor to stablish an effective integrated pest management for a robust control.

View Article and Find Full Text PDF

Post-translational modifiers such as the small ubiquitin-like modifier (SUMO) peptide act as fast and reversible protein regulators. Functional characterization of the sumoylation machinery has determined the key regulatory role that SUMO plays in plant development. Unlike components of the SUMO conjugation pathway, SUMO proteases (ULPs) are encoded by a relatively large gene family and are potential sources of specificity within the pathway.

View Article and Find Full Text PDF

-mediated transient expression has greatly contributed to research in molecular plant biology but has low efficiency and inconsistency in ). Here, we describe a simple, efficient and fast protocol to make transient gene expression in Arabidopsis plants using . This protocol has been successfully used to assess protein sub-cellular localization and accumulation, enzyme activity, and protein-protein interaction.

View Article and Find Full Text PDF