Publications by authors named "Penzo M"

Gynecologic cancers are a significant cause of morbidity and mortality among women worldwide. Despite advancements in diagnosis and treatment, the molecular mechanisms underlying the development and progression of these cancers remain poorly understood. Recent studies have implicated translational machinery (ribosomal proteins (RPs) and translation factors (TFs)) as potential drivers of oncogenic processes in various cancer types, including gynecologic cancers.

View Article and Find Full Text PDF

High-grade osteosarcoma (OS) is the most common primary bone tumor mainly affecting children and young adults. First-line treatment consists of neo-adjuvant chemotherapy with doxorubicin, cisplatin, and methotrexate and surgery. The mean long-term survival rate for localized disease at diagnosis is 65-70%, dropping down to 20% when metastases are present at diagnosis.

View Article and Find Full Text PDF
Article Synopsis
  • Becker muscular dystrophy (BMD) is an X-linked neuromuscular disorder caused by mutations in the DMD gene, impacting dystrophin production in muscle tissues, which is important for patient care and treatment development.
  • A study of 943 BMD patients revealed the median age at diagnosis was 7.5 years, with significant findings including that about 13.5% lost mobility by an estimated age of 69, while 30% experienced cardiac issues.
  • Different types of DMD mutations correlated with variations in disease progression, particularly affecting loss of ambulation and heart functionality, highlighting the importance of precise genetic characterization for managing BMD.
View Article and Find Full Text PDF
Article Synopsis
  • Duchenne Muscular Dystrophy (DMD) is a serious, progressive disorder that leads to muscle wasting and other complications, requiring a combination of therapies and new approaches to patient care.
  • Experts in Italy discussed the challenges of transitioning care for DMD patients from pediatric to adult services, emphasizing the importance of continuous treatment and tracking relevant health outcomes after patients lose their ability to walk.
  • Following loss of ambulation, care shifts focus toward cardiac and respiratory health, nutrition, and the maintenance of upper limb function, highlighting the need for shared protocols and better data collection for optimized management.
View Article and Find Full Text PDF
Article Synopsis
  • Cockayne syndrome (CS) is a genetic disorder causing developmental delays, multiple organ issues, and symptoms resembling premature aging.
  • The study found that CS shares significant gene expression characteristics with neurodegenerative diseases, particularly Huntington's disease (HD), highlighting disruptions in ribosomal biogenesis and protein stability in CS patient cells.
  • Research using cell models demonstrated that the mutant form of the Huntingtin protein in HD leads to similar problems in ribosomal function and overall protein homeostasis, suggesting a common pathway in neurodegeneration between CS and HD.
View Article and Find Full Text PDF

The mediodorsal thalamus (MD) and adjacent midline nuclei are important for cognition and mental illness, but their cellular composition is not well defined. Using single-nucleus and spatial transcriptomics, we identified a conserved excitatory neuron gradient, with distinct spatial mapping of individual clusters. One end of the gradient was expanded in human MD compared to mice, which may be related to the expansion of granular prefrontal cortex in hominids.

View Article and Find Full Text PDF

Current concepts of corticothalamic organization in the mammalian brain are mainly based on sensory systems, with less focus on circuits for higher-order cognitive functions. In sensory systems, first-order thalamic relays are driven by subcortical inputs and modulated by cortical feedback, while higher-order relays receive strong excitatory cortical inputs. The applicability of these principles beyond sensory systems is uncertain.

View Article and Find Full Text PDF

The successful pursuit of goals requires the coordinated execution and termination of actions that lead to positive outcomes. This process relies on motivational states that are guided by internal drivers, such as hunger or fear. However, the mechanisms by which the brain tracks motivational states to shape instrumental actions are not fully understood.

View Article and Find Full Text PDF

Duchenne Muscular Dystrophy (DMD) includes predictable phases requiring dedicated standard treatments. Therapeutic strategies feature corticosteroids or the more recent gene therapy/stop codon read-through. Ataluren (Translarna) is an oral drug promoting the readthrough of premature stop codons caused by nonsense mutation (nm) in order to produce full-length dystrophin.

View Article and Find Full Text PDF

Background: Dilated cardiomyopathy (DCM) is a major complication of, and leading cause of mortality in Duchenne muscular dystrophy (DMD). Its severity, age at onset, and rate of progression display wide variability, whose molecular bases have been scarcely elucidated. Potential DCM-modifying factors include glucocorticoid (GC) and cardiological treatments, DMD mutation type and location, and variants in other genes.

View Article and Find Full Text PDF

Animals can learn about sources of danger while minimizing their own risk by observing how others respond to threats. However, the distinct neural mechanisms by which threats are learned through social observation (known as observational fear learning (OFL)) to generate behavioural responses specific to such threats remain poorly understood. The dorsomedial prefrontal cortex (dmPFC) performs several key functions that may underlie OFL, including processing of social information and disambiguation of threat cues.

View Article and Find Full Text PDF
Article Synopsis
  • Myxofibrosarcoma is a rare and aggressive soft tissue cancer that often recurs and becomes more severe with each recurrence, posing challenges for patients and clinicians alike.
  • The study introduces a new cell line (MF-R 3) derived from a myxofibrosarcoma patient, which was thoroughly characterized using various biological tests to evaluate its tumor properties.
  • The MF-R 3 cell line exhibits similar characteristics to the original tumor and has shown promising sensitivity to anthracycline drugs, making it a valuable model for further research and drug testing.
View Article and Find Full Text PDF

Shwachman-Diamond syndrome (SDS) is characterized by neutropenia, exocrine pancreatic insufficiency and skeletal abnormalities. SDS bone marrow haematopoietic progenitors show increased apoptosis and impairment in granulocytic differentiation. Loss of Shwachman-Bodian-Diamond syndrome (SBDS) expression results in reduced eukaryotic 80S ribosome maturation.

View Article and Find Full Text PDF

The successful pursuit of goals requires the coordinated execution and termination of actions that lead to positive outcomes. This process is thought to rely on motivational states that are guided by internal drivers, such as hunger or fear. However, the mechanisms by which the brain tracks motivational states to shape instrumental actions are not fully understood.

View Article and Find Full Text PDF

Plasticity elicited by fear conditioning (FC) is thought to support the storage of aversive associative memories. Although work over the past decade has revealed FC-induced plasticity beyond canonical sites in the basolateral complex of the amygdala (BLA), it is not known whether modifications across distributed circuits make equivalent or distinct contributions to aversive memory. Here, we review evidence demonstrating that experience-dependent synaptic plasticity in the central nucleus of the amygdala (CeA) has a circumscribed role in memory expression per se, guiding the selection of defensive programs in response to acquired threats.

View Article and Find Full Text PDF

Supraspinal brain regions modify nociceptive signals in response to various stressors including stimuli that elevate pain thresholds. The medulla oblongata has previously been implicated in this type of pain control, but the neurons and molecular circuits involved have remained elusive. Here we identify catecholaminergic neurons in the caudal ventrolateral medulla that are activated by noxious stimuli in mice.

View Article and Find Full Text PDF

The paraventricular nucleus of the thalamus (PVT) is known to regulate various cognitive and behavioral processes. However, while functional diversity among PVT circuits has often been linked to cellular differences, the molecular identity and spatial distribution of PVT cell types remain unclear. To address this gap, here we used single nucleus RNA sequencing (snRNA-seq) and identified five molecularly distinct PVT neuronal subtypes in the mouse brain.

View Article and Find Full Text PDF

T-cell acute lymphoblastic leukemia (T-ALL) is a subtype of ALL involving the malignant expansion of T-cell progenitors. It is driven by a number of different possible genetic lesions, including mutations in genes encoding for ribosomal proteins (RPs). These are structural constituents of ribosomes, ubiquitous effectors of protein synthesis.

View Article and Find Full Text PDF

NOC1 is a nucleolar protein necessary in yeast for both transport and maturation of ribosomal subunits. Here, we show that Drosophila NOC1 (annotated CG7839) is necessary for rRNAs maturation and for a correct animal development. Its ubiquitous downregulation results in a dramatic decrease in polysome level and of protein synthesis.

View Article and Find Full Text PDF

TFIIH is a complex essential for transcription of protein-coding genes by RNA polymerase II, DNA repair of UV-lesions and transcription of rRNA by RNA polymerase I. Mutations in TFIIH cause the cancer prone DNA-repair disorder xeroderma pigmentosum (XP) and the developmental and premature aging disorders trichothiodystrophy (TTD) and Cockayne syndrome. A total of 50% of the TTD cases are caused by TFIIH mutations.

View Article and Find Full Text PDF

Central amygdala neurons expressing protein kinase C-delta (CeA-PKCδ) are sensitized following nerve injury and promote pain-related responses in mice. The neural circuits underlying modulation of pain-related behaviors by CeA-PKCδ neurons, however, remain unknown. In this study, we identified a neural circuit that originates in CeA-PKCδ neurons and terminates in the ventral region of the zona incerta (ZI), a subthalamic structure previously linked to pain processing.

View Article and Find Full Text PDF

Background: Dyskerin is a nuclear protein involved in H/ACA box snoRNA-guided uridine modification of RNA. In humans, its defective function is associated with cancer development and induces specific post-transcriptional alterations of gene expression. In this study, we seek to unbiasedly identify mRNAs regulated by dyskerin in human breast cancer-derived cells.

View Article and Find Full Text PDF

In nature, animals display defensive behaviors that reflect the spatiotemporal distance of threats. Laboratory-based paradigms that elicit specific defensive responses in rodents have provided valuable insight into the brain mechanisms that mediate the construction of defensive modes with varying degrees of threat imminence. In this Review, we discuss accumulating evidence that the central nucleus of the amygdala (CeA) plays a key role in this process.

View Article and Find Full Text PDF