Magnetic Resonance Imaging (MRI) stands out as a notable non-invasive method for medical imaging assessments, widely employed in early medical diagnoses due to its exceptional resolution in portraying soft tissue structures. However, the MRI method faces challenges with its inherently slow acquisition process, stemming from the sequential sampling in k-space and limitations in traversal speed due to physiological and hardware constraints. Compressed Sensing in MRI (CS-MRI) accelerates image acquisition by utilizing greatly under-sampled k-space information.
View Article and Find Full Text PDFBackground: Magnetic Resonance Imaging (MRI) plays an important role in the field of medical diagnostic imaging as it poses non-invasive acquisition and high soft-tissue contrast. However, a huge time is needed for the MRI scanning process that results in motion artifacts, degrades image quality, misinterprets the data, and may cause discomfort to the patient. Thus, the main goal of MRI research is to accelerate data acquisition processing without affecting the quality of the image.
View Article and Find Full Text PDF