A key requirement for the future applicability of molecular electronics devices is a resilience of their properties to mechanical deformation. At present, however, there is no fundamental understanding of the origins of mechanical properties of molecular films. Here we use quinacridone, which possesses flexible carbon side chains, as a model molecular system to address this issue.
View Article and Find Full Text PDFPlasmons in graphene can be tuned by using electrostatic gating or chemical doping, and the ability to confine plasmons in very small regions could have applications in optoelectronics, plasmonics and transformation optics. However, little is known about how atomic-scale defects influence the plasmonic properties of graphene. Moreover, the smallest localized plasmon resonance observed in any material to date has been limited to around 10 nm.
View Article and Find Full Text PDFUltramicroscopy
August 2012
The spatial resolution and contrast level in electron energy-loss spectroscopy (EELS) imaging depend on the delocalization of the inelastic electron scattering cross sections. Theoretical calculations within the dipole approximation provide the lower limit for the delocalization of low loss signals, and suggest that atomic resolution EELS imaging in the low loss energy regime (<50 eV) should be possible. Here, we directly measure the localization of the inelastic electron scattering at different energy loss in the low loss regime using a clean open edge of monolayer graphene.
View Article and Find Full Text PDFVortex beams carrying orbital angular momentum have been produced recently with electron microscopy by interfering an incident electron beam with a grid containing dislocations. Here, we present an analytical derivation of vortex wave functions in reciprocal and real space. We outline their mathematical and physical properties and describe the conditions under which vortex beams can be used in scanning transmission microscopy to measure magnetic properties of materials at the atomic scale.
View Article and Find Full Text PDFLi-ion mobility in LiFePO(4), a key property for energy applications, is impeded by Fe antisite defects (Fe(Li)) that form in select b-axis channels. Here we combine first-principles calculations, statistical mechanics, and scanning transmission electron microscopy to identify the origin of the effect: Li vacancies (V(Li)) are confined in one-dimensional b-axis channels, shuttling between neighboring Fe(Li). Segregation in select channels results in shorter Fe(Li)-Fe(Li) spans, whereby the energy is lowered by the V(Li)'s spending more time bound to end-point Fe(Li)'s.
View Article and Find Full Text PDFJ Electron Microsc (Tokyo)
December 2011
The successful correction of third-order and, more recently, fifth-order aberrations has enormously enhanced the capabilities of the scanning transmission electron microscope (STEM), by not only achieving record resolution, but also allowing near 100% efficiency for electron energy loss spectroscopy, and higher currents for two-dimensional spectrum imaging. These advances have meant that the intrinsic advantages of the STEM, incoherent imaging and simultaneous collection of multiple complementary images can now give new insights into many areas of materials physics. Here, we review a number of examples, mostly from the field of complex oxides, and look towards new directions for the future.
View Article and Find Full Text PDFPlasmonics is a rapidly growing field, yet imaging of the plasmonic modes in complex nanoscale architectures is extremely challenging. Here we obtain spatial maps of the localized surface plasmon modes of high-aspect-ratio silver nanorods using electron energy loss spectroscopy (EELS) and correlate to optical data and classical electrodynamics calculations from the exact same particles. EELS mapping is thus demonstrated to be an invaluable technique for elucidating complex and overlapping plasmon modes.
View Article and Find Full Text PDFWe show in this article that it is possible to obtain elemental compositional maps and profiles with atomic-column resolution across an InxGa1-xAs multilayer structure from 5th-order aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images. The compositional profiles obtained from the analysis of HAADF-STEM images describe accurately the distribution of In in the studied multilayer in good agreement with Muraki's segregation model [Muraki, K., Fukatsu, S.
View Article and Find Full Text PDFOxide self-assembly is a promising bottom-up approach for fabricating new composite materials at the nanometer length scale. Tailoring the properties of such systems for a wide range of electronic applications depends on the fundamental understanding of the interfaces between the constituent phases. We show that the nanoscale strain modulation in self-assembled systems made of high-T(c) superconducting films containing nanocolumns of BaZrO(3) strongly affects the oxygen composition of the superconductor.
View Article and Find Full Text PDFWe report on the magnetic coupling of La0.7Sr0.3MnO3 layers through SrTiO3 spacers in La0.
View Article and Find Full Text PDFCertain cobalt oxides are known to exhibit ordered Co spin states, as determined from macroscopic techniques. Here we report real-space atomic-resolution imaging of Co spin-state ordering in nanopockets of La(0.5)Sr(0.
View Article and Find Full Text PDFPerovskite transition-metal oxides are networks of corner-sharing octahedra whose tilts and distortions are known to affect their electronic and magnetic properties. We report calculations on a model interfacial structure which avoids chemical influences and show that the symmetry mismatch imposes an interfacial layer with distortion modes that do not exist in either bulk material, creating new interface properties driven by symmetry alone. Depending on the resistance of the octahedra to deformation, the interface layer can be as small as one unit cell or extend deep into the thin film.
View Article and Find Full Text PDFJ Electron Microsc (Tokyo)
May 2011
Inclusion of spatial incoherence has been shown to give quantitative agreement between non-aberration-corrected high-angle annular dark-field scanning transmission electron microscopy images and theoretical simulations. Here we show that, using the same approach, a significant improvement in the correlation between calculated and experimental normalized integrated intensities is obtained in the InAsP ternary semiconductor alloy, but residual discrepancies remain. We have demonstrated, in good agreement with experimental intensities obtained in calibrated samples, that normalized integrated intensities show a low dependence on the sample thickness over a wide range of thickness values.
View Article and Find Full Text PDFOxygen octahedral tilts underpin the functionality of a large number of perovskite-based materials and heterostructures with competing order parameters. We show how a precise analysis of atomic column shapes in Z-contrast scanning transmission electron microscopy images can reveal polarization and octahedral tilt behavior across uncharged and charged domain walls in BiFeO(3). This method is capable of visualizing octahedral tilts to much higher thicknesses than phase contrast imaging.
View Article and Find Full Text PDFEpitaxial oxide interfaces with broken translational symmetry have emerged as a central paradigm behind the novel behaviors of oxide superlattices. Here, we use scanning transmission electron microscopy to demonstrate a direct, quantitative unit-cell-by-unit-cell mapping of lattice parameters and oxygen octahedral rotations across the BiFeO3-La0.7 Sr0.
View Article and Find Full Text PDFEvolution of the size, shape and composition of self-assembled InAs/InP quantum wires through the Stranski-Krastanov transition has been determined by aberration-corrected Z-contrast imaging. High resolution compositional maps of the wires in the initial, intermediate and final formation stages are presented. (001) is the main facet at their very initial stage of formation, which is gradually reduced in favour of [114] or [118], ending with the formation of mature quantum wires with {114} facets.
View Article and Find Full Text PDFThe bright field contrast transfer function is one of the most useful concepts in conventional transmission electron microscopy. However, the electron Ronchigram contrast transfer function, as derived by Cowley, is inherently more complicated since it is not isoplanatic. Here, we derive a local contrast transfer function for small patches in a Ronchigram and demonstrate its utility for the direct measurement of aberrations from single Ronchigrams of an amorphous film.
View Article and Find Full Text PDFOxide ionic conductors typically operate at high temperatures, which limits their usefulness. Colossal room-temperature ionic conductivity was recently discovered in multilayers of yttria-stabilized zirconia (YSZ) and SrTiO3. Here we report density-functional calculations that trace the origin of the effect to a combination of lattice-mismatch strain and O-sublattice incompatibility.
View Article and Find Full Text PDFOne consistent limitation for high-resolution imaging of small nanoparticles is the high background signal from the amorphous carbon support film. With interest growing for smaller and smaller nanostructures, state of the art electron microscopes are becoming necessary for rudimentary tasks, such as nanoparticle sizing. As a monolayer of carbon, free-standing graphene represents the ultimate support film for nanoparticle imaging.
View Article and Find Full Text PDFDirect imaging and chemical identification of all the atoms in a material with unknown three-dimensional structure would constitute a very powerful general analysis tool. Transmission electron microscopy should in principle be able to fulfil this role, as many scientists including Feynman realized early on. It images matter with electrons that scatter strongly from individual atoms and whose wavelengths are about 50 times smaller than an atom.
View Article and Find Full Text PDFThe plethora of lattice and electronic behaviors in ferroelectric and multiferroic materials and heterostructures opens vistas into novel physical phenomena including magnetoelectric coupling and ferroelectric tunneling. The development of new classes of electronic, energy-storage, and information-technology devices depends critically on understanding and controlling field-induced polarization switching. Polarization reversal is controlled by defects that determine activation energy, critical switching bias, and the selection between thermodynamically equivalent polarization states in multiaxial ferroelectrics.
View Article and Find Full Text PDF